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ABSTRACT

A numerical method is presented for analyzing the transonic

potential flow past a lifting, swept wing. A finite-difference

approximation to the full potential equation is solved in a coordi-

nate system which is nearly conformally mapped from the physical

space in planes parallel to the symmetry plane, and reduces the

wing surface to a portion of one boundary of the computational grid.

A coordinate invariant, rotated difference scheme is used, and the

difference equations are solved by relaxation. The method is

capable of treating wings of arbitrary planform and dihedral,

although approximations in treating the tips and vortex sheet make

its accuracy suspect for wings of small aspect ratio. Comparisons

of calculated results with experimental data are shown for examples

of both conventional and supercritical transport wings. Agreement

is quite good for both types, but it was found necessary to account

for the displacement effect of the boundary layer for the super-

critical wing, presumably because of its greater sensitivity to

changes in effective geometry.
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INTRODUCTION

The development of profile shapes capable of efficient

operation in the transonic regime has spurred interest in flight

vehicles designed specifically to operate at near sonic speeds.

The ability to predict accurately the aerodynamic characteristics

of the complete three-dimensional wing should have a substantial

impact on the design of such vehicles by allowing detailed trade-

off studies to be performed without recourse to wind tunnel test-

ing of every design variation.

Recent advances in the theoretical prediction of inviscid

transonic flow fields are based largely on type-dependent, finite-

difference solutions of the steady potential equation. These

methods were first applied to the transonic small disturbance

equation by Murman and Cole [1], and the full potential equation

by Jameson [2] and Garabedian and Korn [3] for the prediction of

airfoil flow fields. The three-dimensional small disturbance

equation has also been solved for swept wings by Ballhaus and

Bailey [4] and for wing-cylinder combinations by Bailey and

Ballhaus [5]. Finally, the full potential equation has been

solved by Jameson for the transonic flow over an oblique yawed

wing [6]. Although an oblique wing should be aerodynamically more

efficient than a conventional swept wing [7], it presents

problems of stability and control and aeroelastic divergence.

We consider here the prediction of the flow over a swept wing.

In Jameson's treatment of the flow over oblique wings,

the coordinate system is aligned in planes normal to the wing
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leading edge. Thus, for nonzero angles of yaw the free stream

velocity vector is not contained in these planes, and the treat-

ment of a symmetry plane in the flow past a swept wing would be

difficult in this coordinate system. In the analysis presented

here, the flow is analyzed in coordinate planes parallel to the

free stream velocity vector, and the symmetry condition is

applied on a single coordinate surface. To allow the use of a

fine mesh to resolve the details of the flow in the sensitive

region near the leading edge, the spanwise coordinate lines are

aligned with the leading edge. Thus for wings of appreciable

sweep, the resulting coordinate system is highly nonorthog.onal.

The type of geometry we shall treat is illustrated in

Figure 1. It consists of a wing of arbitrary planform and

dihedral extending from a symmetry plane (or wall). We shall

solve a finite difference approximation to the full potential

equation for the transonic flow past such a configuration using

a generalized relaxation method. The finite difference approxi-

mation is the rotated difference scheme introduced by Jameson [6),

and is not in conservation form. This can introduce substantial

errors in the treatment of flows containing strong shock waves.

To assure the correct shock jump relations one ought either to

introduce a shock fitting scheme or else to use a difference

scheme in conservation form. A conservative formulation of the

small disturbance equation has been given by Murman [8], and the

exact potential flow equation has been solved in conservation form

by Jameson [9] for flows past airfoils. Comparisons with

experimental data show no clear cut advantage to using the

^,	 r
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.lconservation form without a detailed modeling of the shock wave

boundary layer interaction [10]. This is apparently because the

error in the shock jump relations which results from the use of

the nonconservative schemes is in the same sense as the effect

of the boundary layer interaction. A three dimensional scheme

in conservation form will be discussed in a later report.

3
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ANALYSIS

Geometry

Accurate representation of the finite difference boundary

conditions is much simplified if the boundary surfaces lie in

coordinate planes. This is achieved in the present analysis by

a sequence of transformations based upon a nearly conformal mapping

of the physical space in planes containing the wing sections,

taken in the streamwise direction. We begin by considering the

physical space to be described in a Cartesian coordinate system

for which x, y, and z represent the streamwise, vertical, and

spanwise directions, as shown in Figure 1. We then introduce an

arbitrary singular line, just inside the leading edge of the

profile at each spanwise station. This singular line will be the

locus of branch points in subsequent transformations in each of

the spanwise planes to unwrap the wing surface to a shallow bump;

its location will be chosen to make the bump as smooth as possible.

Representing the singular line as

x = xs(z)

y = ys(z)

we define

x = x - x  (Z) r

y = y - Ys (Z) (1)

z = z

This transformation shears out the wing sweep and dihedral, and

puts the singular line at the origin of each x,y plane. In each

4
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of these planes we introduce the conformal mapping 	 !

(X 1 + iYl) 2 = 2(x + iy) ,	 (2)	 i

which maps the entire wing surface to a shallow bump near the

plane Yl = 0. If we define the height of this bump as

rY 1 = S (X,z)
L

then the final shearing transformation

X = Xi

	

Y = Y1 - S(X.Z)	 (3)

Z = z

reduces the wing surface to a portion of the plane Y = 0 .

To render the computational domain finite, stretching

transformations are introduced. For example,

Y = (1 
-by2)a ,
	 0. < a < 1 ,	 (4)

is used to map the planes Y = + - to Y = + 1. Similar transfor-

mations are used outboard of the wing tip in the Z direction,

and downstream of the trailing edge in the X direction. A

sketch of the resulting rectangular computational domain is 	 1

shown in Figure 2.

To avoid discontinuities at the wing trailing edge, the

branch cut in each spanwise plane is continued smoothly down-

stream. In the physical plane, the continuation is represented

by	
( 

X - X*
In 

I X - X*^

	

_*	 l to_
Y	 Yte + T(Xte-x )	 r-	 - ,	

(5)
x - x

Xte- x

5



where T is the mean of the upper and lower surface slopes at the

trailing edge, xte' yte are the trailing edge coordinates, and

x is a suitably chosen scaling constant (usually taken as the

ordinate of the local quarter-chord point). In the solution,

this cut is taken as the location of the vortex sheet, across

which special difference formulas must be applied. Thus we make

the approximation that the vortex sheet lies in a fixed surface
c

near the plane of the wing which leaves the trailing edge

smoothly according to the above formula.

Equation of Motion

In the absence of strong shock waves, the steady, inviscid

motion of a compressible fluid is well approximated by the well

known equation for the velocity potential ^:

(a2_u2) (Dxx+ (a2_v2) ^Dyy+ (a2_w2) ^Pzz 2uvOxy- 2uwOXz - 2vw(Dyz= 0 , (6)

where u, v, and w are the velocity components (i.e., the

derivatives of f) in the x, y, and z directions, and a is the

speed of sound. For the steady, potential flow of a perfect gas

with specfic heat ratio y,

a2 = a2 - y-1 (u2+ v2+ '0* 2 )	 (7)

where a0 is the stagnation speed of sound. If the flow is uniform

at infinity, parallel to the x-y plane, and inclined at an angle a

7
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to the x-axis, the far field singularity can be removed by defin-

ing the reduced potential	 G	 as

G= (D- x cos a- y sin a
(8)

=	 ^D -	 2(X 2_ Y 2 )
f 	 1

+xs (z)	 Cos a - fxly l+1 Ys (z)	 sin a.

The transformations of equations	 (1),	 (2), and (3) applied to

equation (6)	 then result in an equation of the form

A G xx + B G YY + C G z 	 + D G XY + E G xz + P G YZ + R	 0 (9)

If we introduce the notation

x
1- X; - x i- Ys
x	 y (10)

T1	 x	 x	 - 
Xl_ y1-	 s	 s

y	 x

U = i
h 

^D
X h 

iX icos a + Yls.in a + GX- SXGY

V = i
h 4Y h

1 ^-Ylcos a+ X isin a + GY r

W = (D z hEU + hflV + x s cos a+ y s sin a+ G Z_ S z GY

and

U + hEw
(12)

V	 V + h-nw

7here
-2 + iY)	

x 2h 2 =	
j d( R

+ Y 2 (13)
d (X	 + 4-

7
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then the coefficients in equation (9) can be written as

A = a2 j 1 + h 2 E 2 } - U2

B = j a 2 (1+h 2 2 ) - U 2
IS

2 + fa 2  (1+h 2n 2 ) - V21

+ h2 (a2 -w2 )S Z - f 2h2a2 ^n - 20 SX

+ {2h2^a2-2hwU^SXSZ - f2hh2na2-2hwV}SZ

(
lla2-w2l 

	 JJJ

C = h 2 j	 }

D = - 2{a2(1+h2C2)-U2}SX+ 
f 
2h 2 ^Tia 2_ 2UV^- j2h 2 Ea 2- 2hwU}SZ

E = 2h2Ea2 - 2hwU ,

F = -2h 2 (a2-w2 )S Z
 - f2h 2 

Ea 2 - 2hwU}SX+ 2h2na 2 - 2hwV ,

R = J--fa 2 (1+h 2 
E 2)  - U2 1 SXX h2 (a2-w2) S ZZ- f2h 2 ^a 2 -2hwFJ } SXZ G,

+h 3 (a 2 -w 2 ){j (x ' 2-y 2)X	 + 2x'y ; X	 - x' t X - y"X ^U
ll s	 s	 1XX	 s s 1Xy	 s 1X	 s ].y

+ j-(xs
2_Y; 2 ) X

l__+  2xsysXl--+ xsXl- ysXl-^V^l	 xy	 xx	 y	 x

+ 2h4wj (X1-sx-X l-ys )X1--+ (X l-xs+ X1-y; )x1-- ( U 2+V 2)
l	 x	 y	 xx	 rry	 x	 xy

+
 h jX1U+Y 1V } (U 2+V2 ) + cos a j h 2 (E 2 -n 2 ) a2-U2-V2+h2 ( a 2 -w 2 ) x^ }

l	 J	 1111	 X11

f

n
+ sin a2h2 Ena2- 2N+ h2(a2-w2)ys .

Note that for the transformation defined by equation (2),

X1_ = X1/h2

Ylx = Y1/h2
y

r

(14)

(15)

8



I

i

and

X_ - Xl (h 2 - 4Y2)
lxx

__ 	
h6	 1

(16)

X	 = Yl(h2 - 4X2)1xy	 h6	 1

The symmetry condition that w = 0 on the plane z = 0

requires

G  + ^GX - j S  + USX - n IGY = 0 ,	 (17)

and the boundary condition that the flow be tangent to the wing

surface requires

)2
h2 (1 + SX ) + {SZ + USX	 ri }GY

+ { - h2 S X + E{ -S Z- E;S
X +nj JGX + {- S Z - USX + n}GZ

+ ^-Xl- cos a- X 1-sin aisX- X 1-cos a+Xl-sin a = 0 ,	 (18)
x	 y 	 y	 x

on Y = 0.

Downstream of a finite lifting wing there will be a vortex.

sheet. Across the sheet the pressure is continuous, but there

may be discontinuities in the tangential velocity components.

Convection and roll-up of the vortex sheet are ignored. In

reality, the component of velocity normal to the sheet must be

zero, but in our approximation it is simply required to be

uous. Thus, the equation

^YY = 0

is used at points lying on the vortex sheet. Also the disc

9
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nuity in potential is assumed to be constant along streamwise

coordinate lines downstream of the trailing edge. The value of

this discontinuity is determined by the Kutta condition, and its

spanwise variation determines the strength of the vortex sheet.

Finite Difference Approximation

The success of the type dependent difference scheme applied

to the transonic small disturbance equation by Murman and Cole [1]

can be attributed to the fact that it effectively adds a direc-

tional bias to the equation at points where the local flow is

supersonic. In constructing an analogous scheme for the full

potential equation in general curvilinear coordinates (which may

not be aligned, even approximately, with the local flow direction),

care must be taken to ensure that this bias is added in the upwind

direction, i.e., in the direction parallel to the velocity vector.

A method with this property has been proposed by Jameson [6].

To illustrate it, we return to the potential equation in the

physical coordinates. The equation is rearranged as if it were

expressed in a Cartesian coordinate system aligned with the local

flow direction, s, at the point under consideration. Then

equation (6) assumes the canonical form

(a2-g2 ) 4D	 + a2 (0 2
(p
-a ss ) = 0	 (19)

where q is the magnitude of the velocity.

TO
to	 RFC p9^
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The relaxation scheme is designed to simulate an artificial

time dependent process which converges to the desired solution

of the steady state equation. In the finite difference approxima-

tion to the potential equation, central differences are used to

calculate all first derivatives, from which the velocities can be

determined using erluations (11). At grid points where the flow

is subsonic, central differences are also used to approximate the

second-order derivatives in equation (9). A typical central

difference formula for G„ is^X

(n+l) 2 	 (n+l).	 l	 (n)	 (n)
Gi

- 1 ► j, k 	(w) 
Gi

► j, k	 2(1 w) Gi,j,k + Gi+l,j,k ,GXX = -	
AX 

2	 (20)

where the superscripts denote the iteration level and w is

the relaxation factor (6]. If we regard each iteration as repre-

senting an advance At in an artificial time coordinate, this

formula can be interpreted as an approximation to

GXX AX
At

 {GXt + Ax ( W - 
1)Gt}

Similarly, the formula

G (n)	 - G (n)	 - G (n+l)	 + G (n+1)
G	 =	 4.1, j+l,k	 1+1, j-1,k	 1-l1 j +l,k	 1-1, j-] ,k	 (21)
XY	 4AXDY

can be interpreted as an approximation to

_ 
1 At

GXY 2 Ox GYt

The relaxation process can thus be regarded as an approximation to

the time dependent equation

ll
i'

,.
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(M 2 -1)Gss - Gam- Gnn+ 2a 1
Gst+ 2a 2Gmt+ 2a 3Grlt+• 6Gt = Q	 (22)

where M = q/a is the local Mach number, m and n are suitably

scaled coordinates in the plane normal to the velocity vector,,

and Q contains all the terms in the equation other than the

principal part. The coefficients a l , a 2 , a 3 , and 6, depend on

the mix of old and updated values in the difference equations:

as well as any explicit time-like or mixed terms that have been

added for stability.

Introducing the new time coordinate

a
T=t-M211 s+a2m+a3n

transforms equation (22) to

(	
2	

l
(M2-1)G - G - G - i al	 a2 - a 2 }G	 + SG	 = Q	 (23)

s s mm nn 
M11	

2	 3 J TT	 T

In order to ensure the convergence of the scheme, we require

that equation (23) should be a damped three-dimensional wave

equation. This will be the case if

	

Ci2 > (M 2 -1) (a 2+a 3}	 (24)

At points where the velocity is supersonic, upwind differ-

ences are used to represent contributions to G ss in the first

term of equation (19). This is done using formulas of the type

2G 
^ n+l) - G (n)	 - 2G 

(n+l)	
+ G ( n)

_	 l ,j, k	l,j^k	 1-1,j,k	 1-2,j,kGXX	 QX2

G (n+l) - G (n+l)	 - G (n+l)	 + G! n+l')
__ 1,j,k	 1-1,j,k	 1,j-1,k	 1-1,j-1,k

GXY	 OXAY

(25)

12
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These formulas also have the property of guaranteeing diagonal

dominance for the updated values on each line. The formula for

GXX can be interpreted as representing

^t

GXX + 2 AX GXt

Together with analogous formulas for G YY and GZZ , this intro-

duces a term equal to

2 (M2-1)Gst

into equation (22). To ensure that equation (24) is satisfied

at points near the sonic line where (M 2 -1) is small, the coeffi-

cient of Gst can be further augmented by adding a term of the

form

S OX I 
UGXt + VGYt + h `wGZt^ ,	 (26)

where S > 0 is appropriately chosen. The required 	 mixed

derivatives can be constructed in the form

G ( n+l)
 - G (n)	 - G (n+l)	 + G (n)

tit
OX GXt - 

1 .7, k	i ► 7,k	 -1,,j,k	 i-1,j,k	 (27)
DX

x	 r

The supersonic difference

difference formulas simi

evaluate contributions to

but with w set to unity,

test (6].

1

scheme is completed by using central

lar to equations (20) and (21) to

the second term of equation (19),

as suggested by a local von Neumann

13
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Boundary Conditions

The boundary condition at infinity is particularly simple

because the square root transformation reduces the entire vortex

wake to the X-Z plane at downstream infinity. Therefore, since

the uniform stream singularity has been removed by the introduc-

tion of the redu,.ed potential, the Dirichlet condition 	
`b.

G = 0

is appropriate.

On the X-Y and X-Z .planes, finite difference approximations

to the Neumann boundary conditions specified by equations (17) and

(18) must be applied to those portions representing solid bounda-

ries (i.e., the symmetry plane and the wing surface). At the wing

surface, central difference approximations are used ±i1 equation

(18) to define values of the reduced potential at image points

located one mesh spacing below the X-Z plane. A similar method

is used on the symmetry plane, but due to the high degree of

nonorthogonality of the coordinate system when the wing is highly

swept, simple central differences become unstable. Thus, to set

the potential values at the image points for the symmetry plane,

the X-differences required in equation (17) are evaluated by

averaging one-sided differences on either side of the symmetry

plane, taken in the upwind direction in the image plane, and in

the downwind direction in the first plane in the flow region.

The symmetry condition thus remains formally second order accurate,

and the incorporation of the image point whose value is being set

into the X-difference acids to the stability of the scheme. This

method of handling the symmetry condition has proved stable for

14
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sweepangles in excess of 35 degrees.

At points on the X-Z plane which do not lie on the wing

surface, the values of the reduced potential at the image points

are taken to be those of the associated point on the other side

of the branch cut, allowing for a discontinuity across the vortex

	

sheet. The value of this discontinuity is taken to be independent
	

r

of X at each spanwise station, and its value is determined by the

Kutta condition that the flow leave the trailing edge smoothly.

One final note concerns points which lie on the contin-

uation of the singular line outboard of the wing tip. At

these points the mapping is singular, and a special

limiting form of the difference equations must be used. At

points where the solution is regular, the nonlinear terms of

the potential equation are of O(l/h), while the Laplacian

transforms to

h2 ((DX 1X1 + 
4DY

1Yl) + 0 Z

Thus, in the limit as h tends to zero,

^X1X1 + ^Y1Y1 = 0

	
(28)

is a suitable limiting form.

}
`	 15
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Computational procedure

The potential formulation is particularly attractive for

three-dimensional calculations because it requires the storage of

only one quantity at each grid point, and the number of grid i
points required to accurately describe these flow fields is large.

Y	 Even so, it is impractical to store the entire solution array

in the high speed core of many current computing machines.

Fortunately, since the analysis presented here depends on a

relaxation solution of the difference equations, it is not neces-

sary to have the entire solution immediately available at all

times. It is, therefore, stored on a disk file, and read into

core one X-Y plane at a time. At any time during the solution

procedure, the values of the potential on four such planes are

in the core. Old values are buffered in and new values buffered

out of core while other calculations are being performed as much

as possible, to keep the process efficient.

In each X-Y plane, the equations are solved by successive

line overrelaxation. The plane is divided into three regions,

as shown in Figure 3. In the central region the equations are

relaxed along horizontal lines, sweeping from infinity to the

wing surface. In the outer regions the equations are relaxed

along vertical lines, sweeping away from the central region to

infinity. Such a sweep pattern ensures that the sweep direction
will not be opposed to the flow direction in any supersonic zones,
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which would result in instability. In many cases, the central

region can be taken to cover- the entire plane; that is, only

horizontal line relaxation is used.	 a

To speed convergence, an initial calculation is usually

performed on a coarse grid, typically containing 48 x 6 x 8 grid cells

in the X, Y, and Z directions respectively. This solution is

then interpolated onto a finer grid containing twice as many mesh

yells in each direction, and is used as a starting guess for an

intermediate solution. The process is repeated once again to

give the final solution on a grid containing 192x24x32 mesh cells.

A typical run consists of 100 relaxation sweeps on each grid,

requiring a total of approximately 85 minutes of CPU time on a

CDC 6600. The same program has been run on the CDC 7600, for

which a similar calculation requires about 15 minutes.

Examples

In this section we present the results of calculations

using the swept wing program, and compare the predicted surface

pressure distributions with those measured in experiments. The

comparisons are made for two different wings, each typical of

a class of swept wings of the subsonic transport type.

The first wing geometry is representative of the tip

panel of a relatively simple wing of conventional high speed sec-

tion shape. It has a uniform section of 9.8 percent thickness ratio,

t
17
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and the plarform has a leading edge sweep angle of 30 1 , a taper	 3

ratio of 0.7, and an aspect ratio of 3.8. A program generated

projection drawing of the wing is shown in Figure 4. The wing

was tested by Monnerie and Charpin [11] of the ONERA, and carries

their designation of wing M-6.
The first results presented are at a free stream Mach

number of 0.9226 and zero angle of attack, resulting in zero lift
Y

for this symmetrical wing. Figure 5 compares the calculated and

measured streamwise surface pressure distributions at the 20, 45,

65, and 95 percent semispan locations [11,12]. Agreement is

quite good, including the predicted shock location.

Figure 6 shows similar results for the same wing at a

Mach number of 0.919 and an angle of attack of 3.07 degrees.

Again, agreement between the computed and experimental results

is quite good, with the exception of the shock location on the

lower surface, which is somewhat further aft than predicted by

the calculation.

Figure 7 shows a program generated, three-dimensional,

projection view of the wing surface pressure distribution at a

Mach number of 0.840 and an angle of attack of 3.06 degrees.

This is a particularly interesting case because of the merging

of two shocks into one on the wing upper surface as one proceeds

outboard. This pattern is graphically illustrated in the projec-

tion view. Figure 8 shows comparisons of the calculated results

with experimental data, again at the 20, 45, 65, and 95 percent

semispan stations. Agreement is quite good, including the

18
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prediction of the double-shock pattern at the inboard stations.

Figure 9 shows the projection view of the wing surface

pressure distribution at a Mach number of 0.837 and an angle

of attack of 6.06 degrees. Again, the calculation predicts the

merging of a double shock pattern inboard to a single shock

further outboard. Comparisons with data, shown in Figure 10

show that agreement is still quite good.

The second geometry is representative of wings being

considered for the next generation of subsonic transport aircraft.

The wing is twisted, both aerodynamically and geometrically, is

highly tapered, and has a discontinuity in trailing edge sweep

angle at the 35 percent semispan location. The planform has a

leading edge sweep angle of 35 degrees and an aspect ratio of 7.

It has 5 degrees of dihedral. It is defined by four distinct

streamwise sections (at the 12, 35, 70, and 100 percent semispan

stations), with linearly interpolated coordinates between. The

streamwise thickness ratio varies from 16.3 percent at the root

to 11.9 percent at the tip. For the wind tunnel tests the wing

was mounted on a quasicylindrical fuselage which extended to

the 12 percent semispan. For the computations, the symmetry

plane was assumed to be at the same spanwise station as the

wing-fuselage intersection in the tests. A projection drawing

of the wing (extended to the fuselage centerline) is shown in

Figure 11. For these calculations, the wing geometry was modified

to account for boundary layer effects by adding the displacement

thickness obtained from two-dimensional boundary layer calculations
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multiplied by an empirically determined spanwise weighting

factor. The wing was one of several tested in a cooperative

program by the Douglas Aircraft Company and the NASA Ames

Research Center in the Ames 11-foot tunnel at a Reynolds number

of approximately 5x10 6 , based on the mean aerodynamic chord.
r

A program generated three-dimensional projection drawing

of the upper and lower surface pressure distributions for this

wing is shown in Figure 12. (This particular case was . run with

no correction for boundary layer displacement effect, and with

the wing extended to the fuselage centerline.)

Comparisons with experimental data are shown in Figures

13 and 14. The first case, Figure 13, shows streamwise surface

pressure distributions at a number of spanwise stations for a

Mach number of 0.75 and an angle of attack of 2.2 degrees.

Agreement with experiment is seen to be excellent, including

the location and strength of the rather strong shock near the

leading edge on the wing upper surface.

Figure 14 shows similar comparisons at a Mach number of

0.84 and an angle of attack of 1.85 degrees. Again, agreement

is quite good, although the resolution of the first (rather weak)

shock of the inboard double shock pattern seems lost between the

35.5 and 50 percent semispan locations.

The results displayed in Figures 13 and 14 were kindly

supplied by R. M. Hicks and P. A. Henne. Further details of

the wing geometry, calculations, and test conditions are

contained in [13].
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CONCLUSIONS	 ,,..

A numerical method has been presented for determining the

inviscid transonic flow past a swept wing. The method is based

on a type-dependent, finite difference approximation to the full

potential equation_, solved in a computational domain designed
r

for accurate application of the wing surface and symmetry plane

boundary conditions. Calculated surface pressure distributions

agree well with experimental data for wings of conventional and

supercritical section shape (when the geometry in the latter

cases is corrected for the displacement effect of the boundary

layer) .

Mapping techniques similar to those used here could be

used to treat more realistic geometries, e.g., a wing mounted

on a fuselage [14]. The recasting of the finite difference

approximation into conservation form would also be an important

theoretical contribution.

Finally, as was mentioned in the preceding section, these

calculations require a substantial amount of computer time.

Thus, methods of accelerating the convergence of the iterative

scheme are particularly important in three-dimensional problems.

A number of techniques to achieve this have met with success in

two-dimensional calculations, including a hybrid Poisson-solver/

relaxation technique [15,16], a multi-grid method [17], and an

alternating-drection method [18]. The extension of these methods

to three-dimensional calculations should result in great savings.
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(a) Plan View	 (b) Front View

Figure 1. Geometry of Swept Wing.
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Figure 2. Sketch of Computational Domain.
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Figure 3. Sweep Directions in Computational Plane.
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FIGURE 4, GEOMETRY OF ONERA WING,

VIEW OF WING

ONERA WING M6	 L.-E. SWEEP 30 DEG	 ASPECT RATIO 348
MACH	 .923	 YAW	 0.000	 ALPHA 0.000
L/D	 -.00	 CL	 -°0000	 Co	 0246
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FIGURE 7

UPPER SURFACE PRESSURE	 LOWER SURFACE PRESSURE

ONERA WING M6 L. E. SWEEP 30. DEG. ASPECT RATIO 3.8

MACH	 .840	 YAW	 0.000	 ALPHA 3.060
L/D	 13.89	 CL	 .2860	 CD	 .0206
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FIGURE 9

UPPER SURFACE PRESSURE	 LOWER SURFACE PRESSURE

ONERR WING M6 L. E. SWEEP 30. DEG. ASPECT RRTIO 3.8

MACH	 .837	 YAW	 0.000	 ALPHA 6.060

L/D	 9.61	 CL	 .5587	 CD	 •0581
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FIGURE 11, GEOMETRY OF DOUGLAS WING,

VIEW OF WING

DOUGLAS WING W2 (EXTENDED TO CENTER LINE)

MACH	 .819	 YAW	 0.000	 ALPHA 0.000

L/D	 20.09	 CL	 .5455	 CD	 .0272
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FIGURE 12, THREE-DIMENSIONAL SURFACE PRESSURE DISTRIBUTION,

UPPER SURFACE PRESSURE 	 LOWER SURFACE PRESSURE

DOUGLAS WING W2 (EXTENDED TO CENTER LINE)

MACH	 .819	 YAW	 0.000	 ALPHA 0.000

L/D	 20.09	 CL	 .5455	 co	 .0272
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Appendix A. Description of the program

All the numerical results in this report were generated

by the computer program FLO 22 listed in Appendix B. This

program includes options to treat both a swept wing on a

wall (Figure Al), and an isolated yawed wing (Figure A2).

For swept wing calculations the sheared parabolic coordi-

nates are introduced in planes parallel to the free stream.

In the treatment of a yawed wing the whole coordinate system

is rotated through a specified yaw angle, so that the X-Y

planes are normal to the leading edge of the wing at its

center line. In either case the wing section can be varied

in an arbitrary manner, and the only restriction on the plan-

form is that the leading edge may be any smooth curve, but

it should not have kinks, since these would cause the second

derivatives of the s.Ingular line of the coordinate system

to become unbounded. Kinks are permitted in the trailing edge,

on the other hand. The trailing edge defined by the input

is actually replaced by a piecewise straight line connecting

the nearest mesh points in the computational lattice.

',	 y
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The geometry is defined by giving the wing sections at

successive span stations from the ,triig root to the tip, or in

the case of a yawed wing, from the leading to the trailing tip.

Up to 11 span stations may be used for this purpose, and the

planform and dihedral are determined by specifying the chord

and the x and y coordinates of the leading edge at these span
	 ^• r'

stations. The wing section at each station is then determined

by scaling and rotating a prescribed profile, given by a table

of x and y coordinates. If the wing sections are similar, only

the profile for the first station need be read in. The coordi-

nates for the other stations are obtained by scaling the original

profile to the proper chord, and rotating it to obtain the

appropriate twist. If, on the other hand, the sections are not

similar, the program permits the coordinates of new profiles to

be read in at each span station. The wing section between

stations is generated by interpolation. The location of the

singular line about which the wing is unwrapped by the square

root transformation is determined by the parameters XSING and YSING,

which must be specified at each span station. It is important

to choose these so that the mapped profile does not have any sharp

bumps.

The main input to the program is read from Tape 5, and

the output is written on Tape 6. Tapes 1, 2 and 3 are disk files

used for internal storage in order to reduce the requirements for

high speed memory. Tape 4 is a permanent storage device such as

r-
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a magnetic tape on which an intermediate result can be saved.

The computation can then be continued for more iterations,

starting from the values saved on Tape 4. The disk instruc-

tions in the version of the code listed in Appendix B are

specialized to the CDC 6600 using the FTN compiler. Otherwise

the code should be readily adaptable to other computers.

The data deck for a run is arranged to include

title cards listing the required data items. The complete set

of title cards provides a list of all the data which must be

supplied, and can be used as a guide in setting up a data deck.

Each title card is followed by one or more cards supplying the

numerical values of the parameters listod on the title card.

All data items are read as floating point numbers in fields of

10 columns, and values representing integer parameters are

converted inside the program. A glossary of the input parameters

is given in Table 1, and a typical data deck is shown in Table! 2.
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Table 1. Glossary of input parameters

(Listed in order of their occurrence on the data title cards)

TITLE CARD 1

NX	 The number of mesh cells in the direction of the
chord used at the start of the calculation.
NX = 0 causes termination of the program.

NY	 The number of mesh cells in the direction normal
to the chord and span.

NZ	 The number of mesh cells in the span direction.

FPLOT	 Controls generation of plots.
FPLOT=O. for a print plot but no Calcomp plot
at each span station.
FPLOT=1. for both a print plot and a Calcomp plot
at each span station.
FPLOT=2. for a Calcomp plot but no print plot at
each span station.
FPLOT=3. for a three dimensional Calcomp plot only.

XSCAL, PSCAL Control the scales of the Calcomp plots.
XSCAL>O. scales each section plot to XSCAL
XSCAL=O, scales each section plot to 5.0
XSCAL<0. scales the maximum chord to XSCAL, and
each section plot proportionately to the local chord.
PSCAL340. sets the pressure scale to PSCAL per inch
in each section plot.	 ,
PSCAL=O. sets the pressure scale to 0.4 per inch
in each section plot.	 Also,
PSCAL>0. scales the three dimensional plot so
that the span or semispan is 5. If PSCAL=O. and
XSCAL5`0. they_ the three dimensional plot is
scaled so that the maximum chord is 1/2 XSCAL.

FCONT	 Indicator which determines the manner of starting
the program.
FCONT=O. indicates the calculation begins at
iteration zero,
FCONT=1. indicates the computation is to be
continued from a previous calculation. In this
case the values of the velocity potential and the
circulation are read from a magnetic tape where
they were previously stored (Tape 4). It is still
necessary to provide the complete data deck to
redefine the geometry. The count of the iteration
cycles is continued from the final count of the
previous calculation and the maximum number of
additional iterations to be performed is defined
by MIT.
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TITLE CARD 2

MIT
	

The maximum number of iteration cycles which will
be computed.

COV	 The desired accuracy. If the maximum correction
is less than COV the calculation terminates or
proceeds to a firer mesh, otherwise the number
of cycles set. by MIT are completed.

P1	 The subsonic relaxation factor for the velocity
potential. It is between 1. and 2. and should
be increased towards 2. as the mesh is refined.

P2	 The supersonic relaxation factor for the velocity
potential. It is not greater than 1. and is
normally set to 1.

P3	 The relaxation factor for the circulation.
It is usually set to 1., but can be increased.

BETA	 The damping parameter controlling the amount of
added Est (see equation (2.6), page 13).

It is normally set between 0. and 0.25.

STRIP	 Determines the split between horizontal and
vertical line relaxation and is the proportion
of the total mesh in which horizontal line relaxa-
tion is used. Fastest convergence is usually
obtained by setting STRIP = 1. so that horizontal
line relaxation is used for the entire mesh.
If convergence difficulties are encountered STRIP
may be reduced to some fraction between 0. and 1.

FHALF	 Determines whether the mesh will be refined.
FHALF=O.: the computation terminates after
completing the prescribed number of iteration cycles
or after convergence.
FHALF#0.: the mesh spacing will be halved after MIT
cycles have been run on the crude mesh size. An
additional data card must be provided for the
refined mesh giving the numerical values requested
by Title Card 2. If
FHALF<O the interpolated potential will be
smoothed IFHALFJ times.

V	
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The free stream Mach number.

The draw angle of the, wing in degrees.

I

TITLE CARD 3

FMACH

YAW

1

'l
•	 9

ALPHA	 The angle of attack in degrees. When the wing
is yawed, ALPHA is measured in the plane normal
to the leading edge, not in the free stream
direction.

CDO	 The estimated parasite drag due to skin friction
i
	 and separation. It is added to the pressure drag

(sum of vortex drag plus wave drag) calculated
by the program to give the total drag.

TITLE CARD 4

ZSYM	 Determines whether to treat a wing on a wall or
an isolated wing.
ZSYM=1.: the wing is on a wall
ZSYM=O.: the wing is an isolated wing at a yaw
angle given by YAW.

NC	 The number of span stations at which the wing section
is defined on subsequent data cards from the wing
root to the tip if ZSYM=1., or from the leading
to the trailing tip if ZSYM=O.	 If
NC<3 it is assumed that the wing geometry is
the same as for the last case calculated and
the computation for new values of FMACH, YAW, ALPHA
and CDO begins without further data items
being read.

SWEEPI	 Sweep of singular line at the wing root if ZSYM=1.,
or at the leading tip if ZSYM=O.

SWEEP2	 Sweep of singular line at the tip.
(SWEEPI and SWEEP2 are used as end conditions
for a spline fitting the x coordinates of the
singular line.)

SWEEP	 Sweep of singular line in the far field.

DIHEDI	 Dihedral of singular line at the wing root if
ZSYM=1., or at the leading tip if ZSYM=O.

D IHED2	 Dihedral of singular line at the tip.
(DIHEDI and DIEED2 are used as end conditions for
a spline fitting the y coordinates of the singular
line.)

DI:HED	 Dihedral of singular line in the far field.

43



TITLE CARD 5

L

XLE , YLE;

CHORD

(The geometry at the first span station)

Span location of the section.

x and y coordinates of the leading edge.

The local chord value b_v which the profile
coordinates are scaled.

THICK	 Modifies the section thickness. The y coordi-
nates are multiplied by THICK.

ALPHA	 The angle through which the section is rotated to
introduce twist. In the case of a yawed wing, this
angle is measured in the axis system attached to
the wing, not in the direction of the free stream.

FSEC Indicates whether or not the geometry for a new
profile is supplied.
FSEC=O.: -the section is obtained by scaling
the profile used at the previous span section
according to the parameters CHORD, THICK, ALPHA.
No further cards are read for this span station,
and the next card should be the title card for the
next span station, if any.
FSEC=1.: the coordinates for a new profile are
read from the data cards which follow.

TITLE CARD 6 (Profile Geometry Supplied if FSEC=1.)

YSYM Indicates the type of profile.
YSYM=O.	 denotes a cambered profile. 	 Coordinates
are supplied for upper and lower surfaces, each
ordered from nose to tail with the leading edge
included in moth surfaces.
YSYM=1.	 denotes a symmetric profile. A table
of coordinates is read for the upper surface only.

NU The number of upper surface coordaintes.

N'Lj The number of lower surface coordinates.
For YSYM=1., NL=NU even though no lower surface
coordinates are given.

TITLE CARD 7	 (Additional Profile Geometry Supplied if FSEC=1.)

TRAIL	 The included angle at 1%-:h p trax]..ing edge in degrees
The profile may be opera, 'M which case it is the
difference in angle between the upper and lower
surfaces.

SLOPT	 The slope of the mean camber line at the trailing a
edge. This is used to continue the coordinate
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rsurface, assumed to contain the vortex sheet,

smoothly off the trailing edge. For heavily aft
loaded airfoils, the lift is sensitive to the
value of this parameter, which should be adjusted
by comparing two dimensional calculations using
parabolic coordinates with two dimensional calcula-
tions in the circle plane.

_.	

i

XSING, YSING The coordaintes of the singular point inside the
nose about which the square root transformation_
is applied to generate parabolic coordinates.
This point should be located as symmetrically as
possible between the upper and lower surfaces at
a distance from the nose roughly proportional to
the leading edge radius. It can be seen whether
the location has been correctly chosen by inspect-
ing the coordinates of the mapped profile printed
in the output. If the mapped profile has a bump
at the center, the singular point should be
moved closer to the leading edge. If the mapped
profile is not symmetric near the center, with a
step increase in y, say, as x increases through 0,
the singular point should be moved closer to the
upper surface. The coordinates of the singular
point are chosen relative to the profile coordinates
supplied on the cards which follow.

TITLE CARD 8	 (Upper Surface Coordinates)

X,Y	 The coordinates of the upper surface. These are
read on the data cards which follow, one pair of
coordinates per card in the first two fields of 10,
from leading to trailing edge inclusive.

TITLE CARD 9	 (Lower Surface Coordinates, Read if ISYM = 0.)

X,Y	 The coordinates of the lower surface, read from
leading edge to trailing edge. The leading edge
point is the same as the upper surface leading edge
point. The trailing edge point may be different if
the profile has an open tail.

TITLE CARD 10,11... (Geometry at the Other Span Stations)

These title cards are the same as Title Card 5
(geometry for the first span station). The number
of such cards depends on the number of input span
stations NC. If the profiles are similar at each
station except for scaling, thickness to chord ratio
and rotation to introduce twist, FSEC=O. and no
new profile coordinates are needed.
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TABLE 2. DATA DECK FOR ONERA M6 WING

Columns 1-10 11-20 21-30	 1 31-40	 i 41-50 51-60 61-70 71-80 i

Cards
 1

Title of case ONERA M6 WING (copied onto output a6d Calco* plots)

Title Card NY NY NZ FPLOT XSCAL PSCAL !	 FCONT --^

48. 6. 8. 1.	 j 0. 0. !	 0.

Title Card MIT COV P1 P2	 ( P3 BETA STRIP FHALF I^

100. 1.E-6 1.6 1. 1. I	 .10

100. 1.E-6 1.6 1. 1. .10

100. 1.E-6 1.6 1. 1. .10 1.
i

Title Card MACH YAW ALPHA CDO

.840 0. 3.06 .010

Title Card ZSYM NC SWEEPI SWEEP2 SWEEP DIHEDI	 DIHED2 DIHED

1. 6. 29.9 29.9 29.9 0. i	 0.

'

0.

Title Card Z XLE YLE CHORD THICK ALPHA FSEC !I
0. 0. 0. .6737 1

_
. 0. 1.

Title Card YSYM NU NL

1. 72. 72.

Title Card TRAIL SLOPT XSING YSING

7.06 0 .00725 0. f

Title Card X Y (Upper Surface) i
(72 cards) (Coordin tes of profile)

L

itle Card Z XLE YLE CHORD THICK ALPHA FSEC

i
.2 .1150 0. .6147 1. i	 0. 0.

Title Card Z XLE YLE CHORD THICK ALPHA FSEC

.4 .2300 0. .5558 1. 0. 0.

itle Card Z XLE YLE CHORD THICK ALPHA FSEC

.6 .3450 0. .4968 1. 0. 0.

Title Card Z XLE YLE CHORD THICK ALPHA FSEC

.8 .4600 0. .4379 1. 0. 0.

Title Card Z XLE YLE CHORD THICK ALPHA FSEC

1.0 .5750 0. .3789 1. 0. 0.



Both graphical and printed output are provided. The

wing sections defining the geometric configurations are

printed for each span station, if they are different, or for the

first span station only if the sections are all similar. The

program next prints the coordinates of the unfolded sections

produced by the square root transformations at the root and

the tip. These should be inspected to see that they are reason-

ably smooth. The program also prints a chart of an indicator IV

showing the configuration of the wing in the coordinate surface

to which it has been mapped. The values of IV are as follows:

IV = 2 indicates a point on the wing

1 indicates a point on the trailing vortex sheet

0 indicates a point on the singular line

-1 indicates a point adjacent to the edge of the wing

or vortex sheet

-2 indicates an ordinary point not in contact with the

wing or vortex sheet.

The program next displays the iteration history. The

maximum correction to the velocity potential and the maximum

residual of the difference equations are printed at each cycle,

together with the locations of the points where these occur

in the computational lattice, and also the relaxation factors,

the circulation at the wing center line, and the number of

supersonic points.

f
f
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After a specified maximum number of cycles has been

completed, or a convergence criterion has been satisfied, the

section lift, drag and moment coefficients are printed for

each span station, and the pressure distribution is printed

or displayed in a Calcomp plot as desired. Finally the charac-

teristics of the complete wing are printed. These include the

coefficients of lift and form drag computed by integrating

the surface pressure, and the ratio of lift to form drag.

An estimate of the friction drag coefficient may be supplied

in the input, and this will be included to provide an estimate

of the total drag coefficient of the ratio of lift to total drag.

The pitching, rolling and yawing moments are also computed

and printed. In the case of a yawed wing these are in an axis

system normal to the wing leading edge at its center line. In

the case of a wing on a wall the rolling moment is the root

bending moment.

Finally additional Calcomp plots are generated if they

are desired. These show the convergence history, and also a view

of the complete wing and the three dimensional pressure distri-

bution over the upper and lower surfaces separately, with the

wing root or the leading tip at the bottom of the picture. If

the mesh is to be refined the program_ then completes the same

sequence of calculations and output for the new mesh.
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APPENDIX	 B.	 LISTING OF	 THE	 PROGRAM

PROGRA M FL022 (I^-PUT,6LjTPUT, TAPE1, TAPEZ, T4Pt3, TAPc4,
1 TAPE5.INPUT,TAFt6=OUTPUT)

C THREE DIMEN5IONAL	 WING	 ANALYSIS	 IN	 TRANSONIC	 FLOW
C USING SHLARED	 PkkABGI IC	 CJOr C INATES
C WITH	 STORAGE ON	 THE	 Cli)C
C PkUGPAMMED 8Y	 0TONY	 JAMESON,F'AkCH	 1974
C kEVISIGNS BY	 D.	 As	 CAUGHtY	 ANC.	 ANTONY	 JA`1ESON,JEC	 1975 — DLC	 1976
C G	 IS	 REDUCED VFLOCITY	 POTcNTIAL

COMMON G(1S3.,ZF,4),SO(14^,35),r0(131),ZO(131),
` I^(iSa,35),ITEI(35),1Tcc(3:),

2 AL'(193),Ai(193),A2(193),A3(193),
3 BG(2E1,R1(26),d2(26),H3(26),
4 Z(3h),C1(35),CZ("s5),C3(35),
5 XC(35),XZ(35),XZZ('"5),YC(3`.),YZ(35),YZZ(35),
6 NXv N Y," ! Z,K TEI.,KTr 2, ISYN,KSY'1,SCAL,SCALZ,
7 YAW,CYAWPSY4M,ALNHA, CAP SAY FMACH,NI,N2,N3,I0

COMMON /FLO/	 STRIP, Pip P2,P3,BETA,FR,IR,JR,KR,DG,IG,JG,KG,NS
DIMENSION X5(241,11),YS(241,11),

1 ZS(11),XLE(il),Y(E(11),SLOPI(11),TRAIL(11),NP(ii),
'rl(111,t2(11),t3(11),F4(11),ESt11),

3 XP(241),YP(241),D1(241),D2(241),D3(241),
4 X(1S3),Y(iy3),SV(193),SM(193),CP(193),
5 ChCND(35),SCL(35),SCD(35),SCM(35),TITLE(20),
6 FIT( 3),Cuvv(3),F	 D(3),P20(3),P30(3),BrTAO(3),
7 STQIPO(3),FHALF(37),RES(501),000NT(501)
NO =	 241
NE •	 19 3
IREAD =	 5

IWRIT a	 6

KPLUT =	 C

IPLOT =	 1

ISTOP 7	 L
OF T$EN i = 1 n,Y

N2 = P^Gg 
IS POOR3	 gF,pgOD

REWIND 1
REWIND 2
kEWINn 3
khW1ND 4
J C (?
RAO =	 57.[915779513u823

1	 WRITE (IwRIT,6CO)
w R I T E (IwRIT,2)

2	 FORMAT(14HOPROGPAM FLOZZ,70X,32HANTONY	 JAMESON,COURANT	 INSTITUTE/
1 50HOTHREE	 DIMENSIONAL	 WING	 ANALYSIS	 IN	 TRANSONIC	 FLOW,
2 36H	 USING	 SHEARLU	 PAKAB(LIC	 COUkDINATES)
READ (IREAD,53G)	 TITLE
WRITE (IwkIT,630)	 TITLE
READ ( IRE AD, 54C )
KkAD ( IREAD,:1C)	 Ft•X, FNY, (-NZ, FPLOT, XSLAL, PSCAL, FCONT, FA1
NX =	 FNX
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NY	 = FNY
NZ	 = FNZ
IF (NX. LT. 1) GO i0 201
KPLOT	 = AB.S(FPLOI)
READ	 (IkEAD,50C)
NM	 = 0

11 NM	 - NM +1
READ	 (IREAD,51L) FIT(NM),COVO(Ni")PPlv(NM)sPCG(NM),P3,J(Ntt),

1	 3ETA0(NM),STF IP(J(NM),FHALF(NM)
IF (FHALF(NM).NE.0.9AN0.NM.L1.3) GO TJ 11
FHALF(3)	 - U.
READ	 ( IPt AD, 500)
READ	 (IREAU,51C) FMACH,YA,AL,COC
YAW	 = YA/RAD
ALPH A 	 = AL/RAD
CALL GEOM	 (ND,KC,NP,ZS,XS,YS,XLr=,YLt,SL3Pl,TRAIL,XP,YP,

1	 SWFEP1,SwtcPL,SwFi:P,")IHE0I,GIHED2,DiHED,
2	 XIEG,CHOi Dv,ZTIP, 1SYMU,KSYM)
ISYM	 ISYMO
IF (ALPHA.NE.O.) 15YM = 0
IF (KSYM.NE.U) YAW = 0.
CYAW	 - CCS(YA'A)
SYAW	 = SIN(YAW)
CA	 = CYAw*CUS(ALPHA)
SA	 = CYAW*SIN(ALPHA)
IF (FCONT,LT.1.) GO TU 91
READ	 (4)	 NX,NY,NZ,NM,KlPK2,NIT
MX	 NX +1
MY	 s NY +2
MZ	 NZ +3
DG 62 K=1,MZ
READ	 (4)	 ((G(I,J,i),I=L,MX),J=1,MY)
BUFFER OUT(N3,1) (G(l,l,l),G(MX,MY,1))
IF (UNIT(N3).GT.0.) G% TC 1
BUFFER OUT(N1,1) (G(1,1,1),G(MX,MY,1))
IF (UNIT(N1).GT.0.) GU TC 1

62 CGNTINUE
READ	 (4)	 (E0(K),K=Kl,KZ)
REWIND N3
REMIND N1
REWIND 4

91 CALL MkC (NX,NY,NZ,rC^)YM,XIE(,ZTIP,XMAXFZMAX,
1	 SY, SCAL, `,CALZ, AXP AY,AZ,
2	 AC,,Al,A2,A3,BD,B1,B2,B39Z,C1,C2,C3)
CALL SINGL (NCP Z,KSYM,KTEi,KTE2,CHORDC.

1	 SwEEPl,SWEEP2,SwEEP,UIHEDI,UIHED2,DIHED,
2	 ZS,XLE,YLL,XC,XZ,XZZ,YC,YZ,YZZ,
3	 Z,CI,C2,C3, cl, E2, E3, E4, c5, IND)

CALL SURF	 (NDNNE,MCPAX,NZ,ISYM,KSYM,KTEI,KTE2,SCAL,
1	 YAW, Al:, Z, Z.i, XC, YC, S LOP T, TRA IL, X S, Y S, NP,
2	 ITE1, ITE2, iU, SOP Z0, AP, YP, D1, DZ, D3, X, Y, I NO )
IF (IND.EU90) GC TO 291
IF (FCONT.GE.1.) GU TO 101
NM	 = 1
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NIT	 = 0
CALL ESTIM
IF (IO.EQ.0) GO TO 1
REWIND N3
REWIND N1

101 WkIT r7 (IWRITs60C)
FCONT	 = G.
MIT	 = FIT(NM)	 SNIT
K1T	 - MIT
IF- (NM * GT.l.AND.FHALF(NM).tQ.G.) KIT = 10
JIT	 NIT
KFES	 (MIT —NIT —G)/500 +2
JRES	 = 0
NRES	 0
COV	 COVO(NM)
STRIP	 = STR1P4(NM)
BETA	 - BETAO(NM)
MX	 = NX +1
MY	 - NY +2
MZ	 = NZ +3
KY	 = NY +1
K1	 = 2
KL	 = NZ
IF (KSYM.cQo3) GO TO lu3

K1	 = 3
KZ	 - NZ +2

103 L 	 - NZ /2 +1
IF (K5YM.NEs0) LZ	 j
WRITE (IWkIT,104)

104 FGRIAT(48HOINUICATI(ih OF LOCATION OF WING AND VORTEX SHEET,
1	 27H IN COGRUINAFE PLANE Y = 0./
2	 27tiG((IV(IPK),K-KLK2),I-2,NX) )
DO I.Qt I=2,NX

106 WRITE (IkkIT,65C) (IV(i,K),K=K1,K2)
WRITE (IWRIT,6U0)
WRITE (IWFITs112)

112 FGRMAT(49HCCHORCwISE CtLL DISTRIbUTILN IN SQUARE ROOT PLANE,
1	 54H AND tAPPEU SUkFACE COORDINATES AT CENTER LINE AND TIP/
2	 15HO	 x	 ,15H	 ROOT PRJFILEP15H	 TIP PROFILL f
Of) 114 I=2,NX

114 kRITE (IWRIT,610) AO(I),SO(I,LZ),Su(I,KTE2)
k-RITE ( IwRIT, ilt )

116 FORMAT(15tt0 TE LOCATION ,15H 	 POWER LAW	 )
WRITE (Ii%RIT,61C) XMAX,AX
WRITE (INPITP606)
WRITE (IWR,IT,11E)

118 FORIAT(46HONORMAL CtLL 01STRIBUTION IN SQUARE ROOT PLANE/
1	 15HO	 Y	 )
DO 120 J=2,KY

120 WRITE (IWRIT,610) BC(J)
WRITE (IWPITf122)

122 FGRMATC15HO SCALE FACTORP 15H	 POWER LAW )
WRITE (XWRIT,EIG) SY,AY
WRITE (IWRIT,60(,)
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WRITE (IWRITs124)
124 FORMAT(45HOSPAN6!SE CLLL DISTRIBUTION 4ND SINGULAR LiNL/

1	 15HO	 Z	 s15H	 X SING	 si5H	 Y SING	 s
2	 15H	 x 	 s15H	 YZ	 s15H	 XZZ	 s
3	 151-'	 YZZ_	 1
DO 126 K=K1sK2

126 WRITE (IWRIT,61G) Z(K),XC(K),YC (K)PXZ(K)PYZ(K),*XZZ(K)sYZZ(K)
WRITE (IWRITs12b)

128 FGRMAT(15HO TIP LUCATiONP15H 	 POWER LAW 1
WRITE (IWRITs610) ZMAXsAZ
WRITE (IWRITs60G)
WRITE (IWRITs131)

132 FURMAT(19HOITERATIVE SOLUTICtl
1	 43HOSTRIP WIDTH MGR HURIZONTAL LINE RELAXATION)
WRITE (IWkIT,610) STPIP
WRITE fIWR.ITs1341

134 FORMAT(15HO	 NX	 ,l5h.	 NY	 s15H	 NZ	 )
wRITE (IwkITs640) NXsNYsNZ
CALL SECOND(T)
WRITE (IWRITs700) T
WRITE (IWRITs13t)

136 FORMAT(15HO	 MACH NO	 P15H	 YA6	 s15H ANG OF ATTACK)
WkITE (IWRITsblL) FMACHsYAsAL
WRITE (I'WRITs136)

138 FORMAT(10HOITEPATiGNs15H 	 CORRECTION s4H I s4H J s4H K s
1	 1.H	 KLSIOUAL s4H I s4H J s4H K s
2	 10H CIRCULATNP10H REL FCT 1,1GH REL FCT 2slOH REL FCT 3s
3	 10H	 SETA s1GH SLNIC FTS)

141 NIT	 = NIT +1
JIT	 = J1T +1
P1	 = P10(NM)
PZ	 = P20(NM)
P3	 = P30(NM)
IF (NIT.LE.10) P1 = 1.
IF (NIT.LE.1(j) F3 - 1.
CALL MIXFLO	 ^^^g,IT ^ tAY 1riL

IF (1C.FQ.0) GO TO 151	 k'R
J U	 = 0'
REWIND N1
REWIND N2
N	 N1
N1	 N2
NZ	 N3
N3	 N
WRITE (1Wk1Ts660) NITsL)GsIGsJGsKGPFRsIRsJRsKRsEU(LZ)s

1	 P1sP2sP3s8FTAsNS
JRES	 JRES +1
IF (JRES.EG.K.RES) JRES	 I
IF (JRES.NE.1) GO TO 143
NRES	 = NRFS +l.
CbUNT(NRES) = NIT —1
RtS(NRES) = FR

143 IF (JIT.EQ.KIT) GO TO 251
IF (NIT.LT.MIT.AND.ASS(OG).GT.COV.AND.ABS(OG).LT.10.) GO TO 141

14
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GO TO 161
151 IF (JO.EQ.1) GC TO 1

REWIND N1

REMIND N2

J0	 1
N	 N3

N3	 N2
N2	 N1
N1	 N
GO TO 141

161 RATE	 G.
IF (NRES.GTol) RATE = (A8S(RES(NRES)/RES(l)))

1	 **(1./(CGUNT(NRES)	 —C^:]LNT(1)))
WRITE (IWRIT,162)

162 FORMAT(15HO MAX kESIDAL 1,15H MAX RESIDAL 2,15H	 WORK	 ,
1	 15H REDUCTN/CYCLE)

WRITE (I Wk IT,67G) RES(1),RES(NRES),000NT(NRES).PRATE
CALL SECOND(T)
WRITE (IWRIT,700) T
WRITE (IWRIT,60C)
DO 164 L=1,3
BUFFER IN (N1,1) (G(1,1PL),G(MX,MY,L))
IF (UNIT(Nl) * GT909) GO TO 151

164 CONTINUE
LX	 = NX/2 +1
K	 = 2

171 K	 = K +1
IF (K.EQ.MZ) GO TO 191
DO 172 J=1,MY
DO 172 I=l,MX
G(I,J,1)	 G(1,J,2)

172 G(I,J,2)	 G(l,.E,3)
BUFFER IN (N1,1) (G(1,1,3),G(MX,MY,3)1
IF (UNIT(N1).GT.0.) GO TO 151
IF (K.LT.KTEl.0R.K.GT.KTE2) GO TO 171
11	 - ITE1(K)
I2	 = ITE2(K)
CALL VELO (K,2,SV,SM,CP,X,Y)
CHORD(K)	 = X(I1)	 —X(LX)
CALL FORCF (Il,I2,X,Y,CP,AL,CHORD(K),XC(K),SCL(K.),SCD(K),SCM(K))
IF (KPLOT.GT.1.AN0.K.GT.KTEl) GO TO 185,
WRITE (IWRIT,6GG)
WRITE (IWRIT,182)

182 FGRMAT(24HOSECTION CHARACTtkISTICS/
1	 15HO	 MACH NO	 ,15H	 YAw	 ,15H ANG OF ATTACK)

WRITE ( IWk IT, 610) FMACH, YA, AL
WRITE (IWRIT,184)

184 FORMAT(15HO SPAN STATIONP15H 	 CL	 ,15H	 CD	 ,
1	 15H	 CM	 )

185 WRITE (IWRIT,61C) Z(K),SCL(K),SCU(K),SCM(K)
IF (KPLO1.LE.1) CALL CPLOT (I1,I2,FMACH,X,Y,CP)
IF (KPLOT.LT.I.OR.KPLOT.GT .2) GO TO 171
CALL GRAPH (IPLCT, lip 12PXPYPCPYTITLP,F14ACHPYAPAL,

1	 Z(K),SCL(K),SCO(K),CHORDO,XSCAL,PSCAL)
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GC TO 171
191	 CALL	 TOTFOR(KTEIPKTELPCHORUPSCLPSCDPSCPPZPXCP

1	 CLPCi1PCMPPCMkPCMY)
CD1	 n CYQW*CU1
Cu	 = COO	 +CG1
VLD1	 - 0.
IF	 (ABS(CDl).GT.I.c — G) 	VLUi	 -	 CL/COL
VLD	 - 0.
IF	 (ABS (CL, ).GT.19E-6)	 vLU	 -	 CL/CU
WRITE	 (IsRITs000)
WRITE	 (IWRITP192)

192	 FORMAT(21HOWING CHARACTEkISTICS/
1	 15HO	 MACH K0	 015H	 YAW P15H	 ARG	 LF	 ATTACK)

WRITE	 (IwkITP610)	 FMACHPYAPAL
WkITE	 (IwRITP194)

194	 FGRMAT(15HO	 CL	 P15H	 CD	 FCRM P15H	 CG	 F k 1CTION	 P
1	 15H	 c 	 P15H	 L/D	 FORM P15H	 L/D	 )
WRITE	 (IWPITs61C)	 CLPCUlPCDQPCDPVL01PVLD
WRITE	 (IWRITs196)

196	 FORMATl15HO	 CM	 PI1CH	 P15H	 CM	 !LOLL P15H	 CM	 YAw	 )
MRITE (IWR.ITP61O CMPPCMRPCMY
REWIND N1
IF (KPLOT.LT .1) GO TO LO1
CALL RPLO1 (IPLCI P NRESs kESP COUNTP TITLED FMACHP YAs ALs NXP NYs NZ )
CALL THREED(IPLCTsSVYSM.PCPsXsYPTITLEPYA,AIP

1	 VLDPCLPCGPCHORDCPXSCAL,PSCAL)
IF (10.EG.0) GQ TO 1:1

201 IF (ISTOP.E0.1) GO TO 301
IF (FHALF(NM).EG.09) GO TO 1
NX	 = NX *NX
NY	 - NY +NY
NZ	 - NZ +NZ
CALL COOk0 (NXPNYPNZPKSYMPX'TEOs7TIPPXMAXPZMAXP

1	 SYP SCALP SCALZs AXs AYs ikZP
2	 AOPAIPA2PA3s6OsBIPe2st3sZPClPCZPC3)
CALL SINGL (NCPNZPKSYMPK]EloKTEZPCHi?kDOP

1	 SWEEPIPS^.EEP2P,^)wEEPsDIHEGiy?,)IHED?_,,DIHEDs
2	 ZSP1< LEY YLEPXCPXZsXZZsYCPYZPYLZs
3	 ZPClPC29C3PElsE2PE3PE4PE5sINO)

CALL SURF	 (NDPNLPNCP NAP NZPISYMPKSYMPKTtisKTt('.PSCALP
1	 YAWPA(Jp ZPZSPXCPYCPSLOPTPTRAILPXSP1SsNPP
2	 ITEIPITE2PIVP SOP ZLoXPPYPPD1PD2PD3rXPYs ING1
IF (IND.EQ*O) GO TO c91
CALL REFIN
IF ( 1G. EG.O ) GO TO 221
ktW1ND N1
KEWINU N2
tvSMQC	 - —FHALF(NM)
IF (NSMOO.LT.i) G9 TU 211
00 2CZ N-1sNSMOG
CALL SM00
IF (IG.EC.C) GCS TO 221
REWIND N1

2u2 REWIND N2
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Ni	 N2
NZ	 = N3
N3	 = N
NM	 NM +1
NIT	 = 0
GG TG 141

221 NX	 = NX/2
NY	 - NY/Z
NZ	 c NZ/2
CALL COORD (NX,NY,NZ,KSYM,XTfO,ZTiP ,XMAX,ZMAXP 	 r

1	 SY,SCAL,SCALZ,AX,AY,AZ,
2	 AO, Al p AZtA3s6JpBlsF2,63,Z,C1,C2,C3)
CALL SINGL (NC,NZsKSYM,KTEI,KTE2pCHJ9D0p

1	 SwEEPIo Si%LtP2p SWEEPPDIHEDI , DIH^=D2pDIHcDo
2	 ZS,XLE,YLEsXC,XZ,XZZ,YCsYZpYZZ.
3	 Z,C1,C2,C3,E1,E2,L3sE4,E5plND)
CALL SURF	 (NDsNE,NC,NX,NZ,ISYM,KSYM,KTEI,KTE2,SCAL,

1	 YAwsAOPZPZJ.OXC.*YCsSLOPT.IRAIL,XS,YSsNPP
2	 I TEIP ITr2, IV) Svf ZL;P XP) YPPDIPD21 D3)X) Yl IND)

IF (INDoFQ * 0) GC Ti 291
GO TO 151

251 K1	 - KTE1 —1
K2	 = KTE2 +ITE2(KTE2)	 —NX/2
00 252 M=1,3
6RITF (4)	 €dXpNY,NZ,NiI, Kip K2,(• IT
LG 262 K=1,MZ
BLFFEK IN 041,1) (G(1J1f1)/G(NX)MYJ1))
IF (UNIT(N1).GT.Q.) GO TO 281

262 'WRITE (4)	 ( (G(I,.l,l),I=1,MX)sJ=1,MY)
REWINC N1
WRITE (4)	 ((-O(K),K-K1,K2)
ENDFILE 4

252 CONTINUE
REWIND 4
CALL SSWTCH(1,iSTOP)
IF (ISTOP.EC.1) GO TC 161
J1T	 = 0
iF ( N IT.LT.MIT.AND.AES(OG).GT.CUV.AND.A9S(OG).LT.10.) GO TO 141
GO TO 161

281 REMIND 4
GO TO 151

291 WRITE. ( IWkIT•600)
WRITE ( IWPIT,292)

292 FORMAT ( 24HOBAU LATAPSPLINE FAILURE)
GO TO 1

301 IF (KPLOT.GT.0) CALL PLOT(0.,0.p999)
STOP

50C FORMAT(1X)
510 FORMAT (8 F 1(j.6 )
530 FOR4AT(2OA4)
600 FORMAT(1H1)
610 FORMAT(Fl2*4,7F15.4)
620 FORMAT(8E15.5)

7
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630 FORMAT(1H0,20A4)
640 FORr1A 'k(  I8, 7115)
65C FORMAT(1X,32I4)
660 FORMAT(I10,E15.5,3I4,E15.5,3I4,5F10.5,Ii))
670 FORMAT(2E15.4p2F15.4)
700 FORMATC15HOCOMPUTING TIME,F1(,e3p10H 	 SECONDS)

END

SUBROUTINE GEOM	 (Nij,+VC,VP,ZS, XS oYS,XLE,YLE,SLOPT,TRAIL,xP,YF,
1	 SWEEPI,SWEEP2,SWEEP,DIHEDI,DIHE02,D1HtLJ,
2	 XTE0,CHOkL0,ZTIP,ISYM0,KSYM)

C	 GEOMETRIC DLFINITION OF wING
DIMENSION	 XS( ND,1),YS(ND,l),Z5(1),XLE(1),YLE(1),

1	 SL OPT( 1),fRAIL(I),XP(I)#YP(I),yP(1)
IkEAO	 = 5
IWRIT	 = 6
KAD	 = 57.295774513U523
READ	 (IRt ADP 5CG)
READ	 (IRE AD#51G) ZSYM,FNC,ShLEPl, SWEEP 2 ,SwEEPPDIHECI,DIHtJ2,CIHED
IF (FNC.LT93.) kcTURN
K.SYM	 = Z SYfl,

NC	 = F NC
WRITE"_ (IWFIT,2)

2 FORMAT(15HO	 SWEEP(1)	 ,15H	 SWEEP(2)	 ,15H	 FINAL SWEEP ,
1 •	 15H	 LIHED(1)	 ,15H	 DIHEu(2)	 ,15H	 FINAL UIHED )

WKITE (IWRIT,610) XL,YL,CHORC,THICK,AL
WRITt (Iw+RIT,610) SWEEP1, SWEEPZ,SwEEP,EIriED1,UIHcU2,CIHED
SWEEPI	 = SWEEP1/kAD
SWEEP2	 SWEEP2 /RAL)
SWEEP	 _ SHEEP/RAD
DIHEDI	 DIHEDI/RAD
DIHED2	 = DIHEUZ/RAD
DINED	 DIHEDiRAD
ISYMC	 1
XTEO	 0.
CHORVC.	 = 00
K	 = L

11 READ	 (IREAD9500)
READ	 (IREAD,51(;) ZS(K),XL,YL,CHOkO,THICK,AL,FSEC
ALPHA	 - AL/RAD
IF (K.GT.I.AND.FStC.EQ.O.) GL TO 31
READ	 ( IREAD, 5C(.)
READ	 ( IREAD, 51C ) YSYkii, FNU, FNL
NU	 n FNU
NL	 = FNL
N	 - NU +NL —1
KEAD	 (iREADP500)
READ	 (IREAD,51C) TRL,SLT,XSING,YSING
READ	 (IREAD,500)
DO 12 I=NL,N

12 READ	 (IREAD,51C) XP(I),YP(I)
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L	 = NL +1
IF (YSYM * GT * 0 * ) GO TO Ia
READ	 (IRLAD,5CC)
00 14 I=1,NL
READ	 (I R FAD,510) VAL,OUM
J	 = L —1
XP (J )	 _ "VAL

14 YP(Jl	 - DUN
GO To 21

15 1	 = L
DO 16 I=NL,h
J	 = J —1

XP(J)	 XP(i)
16 YP(J)	 _ —YP(I)
21 WRITE (IWRIT,60G)

WRITF (Iit RIT,22) ZS(KD
22 FGRMAT(16HOPk.OFILc Al L	 ,FiC•.5/

1	 15HO	 TE ANGLE ,l7h	 TE SLOPE ,15H
2	 15H	 Y SING	 )
WkITE (IikkIT,610) TRL,SLT,XSING,YSl.NG
WRITE (IWRIT,24)

Z4 FGRMAI(IfHO	 X	 ,17r	 Y	 )
UO 2E Y=1,N

26 WRITE (16RIT,61	 XP(i),YP(l)
31 SC4LF	 = CHLFD/(XF(1)	 —XP(NL))

XLE(K)	 = XL	 +(XS1NG —XP(NL))*CHICK*SCALE
YLE'(K)	 = YL +(YSIN6 —YP(NL))*THICK*SCALE
XX	 = XP(6L)	 * (XSi,v(- —:P(NL))*THICK
YY	 = YP(NL)	 +(YSING —YP(NL))*1H1CK
CA	 = COS(ALPHA)
SA	 = SIN(ALPHA)
DL 32 I=1,N
XS( I,K)	 = SCALE*((XP(I)	 —XX)*CA	 +Ti;1CK*(YP(I)

32 YS(I,K)	 = SCALE*(THICK*(YP(I)	 —YY)*CA —(XP(1)
SLOPT(K)	 = THICK*SLT —TAN(ALPHA)
TRAIL(K)	 = THICK*TKL/KAL
NP(K1	 = N
XTEO	 = AMAX1(XTE0,XS(1,K))
CHORDO	 AMAX1(CHURDUPCHORD)
IF (YSYM * LE * 0 ** GR * ALPHA * Na * 0 * ) ISYMO = 0
WRITE (IwRIT,52) ZS(K)

52 FORMAT(27HOSECTION DEFINITION AT Z = ,F10.5/
1	 15HO	 XLE	 ,15H	 YLE	 ,1!H
2	 15NTHICKNESS RATIO,I5H	 ALPHA	 )
WkITF (IWRIT,610) XL,YL,CHCRV,THICK,AL
K	 = K +1
IF (K.LE.NC) GO TO 11
ZG	 = 05*(ZS(1)	 +ZS(NC))
IF (KSYM * NE * D) ZO = ZS(l)
DO 62 K=1,NC

62 ZS(K)	 = Z5(K)	 —ZO
ZTIP	 = ZS(NC)
RETURN

50Q FORMAT(1X)

I

X SING

—YY)*SA)
— XX) *SA)

CHOkD	 ,
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510 FORMAT(6F10.6)
600 FORMAT(lHl)
610 FORMAT(F1294,7F15.4)

ENO

SUBRUUTINE COOPO	 (N)(,N Y ,NZ,KSYN,XT-O,ZTIP,XMAXPZMAX,
1 SY, KCAL,	 CALL, AX, AY, AZ,
2 60,A1, A2, A3, b0, B1, bi,93, Z, C1, C2, C3 )

C	 SETS UP STRETCHED PAkA30LIC	 AND	 SPANw1Sc	 CJOKCINATES
DIMENSION AO(1),A1(i),AZ(1),A3(1),tl0(1),B1(l),62(1),E3(1),

1 Z(1),C1(1),C2(1),C3(1)
GX 2./NX
DY 1./^Y
KY NY	 +1
DZ 2. /NZ
ZO 1.	 —DZ
K1 = Z
K2 NZ
IF	 (KSYM.EQ.0) GO TO	 1
DZ = 1./NZ
ZL c 0.
K1 = 3
K2 = NZ	 +2

1	 AX = .
AY n .5
AZ .5
B 0.
BZ = 0.
XMAX = 062:
ZMAX = .625
SY = .5
SCAL XTEC /(.50001*XMAX*XMAX)
SCALZ = ZTIF/(L.0000G1*ZmAX)
V2 = (DX/DY)**2
W1 s SCAL/SCALZ
62 = (W1*DX/DZ)**2
S73 = SQR1(73.)
BBX = — 6X*SQ P T(3.*(7.	 +	 S73))/((1.	 +	 S73)*XMAX**3)
ABX = 1.	 —	 bFX*SQkT((7.	 +	 S73)/12•)*XMAX**3
CBX = (19.	 +	 S73)*XMAX*XMAX/12.
ABBX = 48X	 +	 6BX*(3.*CdX	 —	 4.*XMAX*XVAX)*XMAX*XMAX/

1 SQRT(C6X —	 XMAX*XhAX)
DO 12	 I =2,NX
ou
B = 1.
IF	 (AES(OD).GT.XMAX) GO	 TO	 1.3
A = CBX — JD*DO
AS = SQRT(A)
C = ABX*AS	 +	 6BX*(3.*CBX — 4.*DD*DD)*DO*00
DO = ABX*DD	 +	 BBX*AS*DD**3
D1 - AS/C

r'F^

x
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D2 BaX*(Cyx*l-6.*CuX	 +	 14.*UD*bD)	 -	 12.*UD**4)*DD/(A*C)
GO TO 14

13 IF	 (DD.LT.O.) B	 =	 -1.
A = 1.	 -((DG	 -B*XMAX)/(1.	 -XMAX))**2
C A* *AX
D (AY	 +AX	 -1.)*(1.	 -A)
DO B*Xh,AX	 +	 Ak,.	 X*(OD	 -	 F*Xlh X) /C
Di = A*C/((I.	 +	 D)*ABBX)
D2 = -(AX	 +AX)*(DU	 -R*XMAX)

1 *(3.	 +U)/((l.	 +D) *A*(1.	 -XMAX)**2)
14 AG(I) _ ")0

Al ( I 1 =.. 5*11/0 X

A2(I) = R1 *G1
12 A3(1) _ 01*vX*02

DO 22 J=2,KY
DD = (KY	 -J )*DT
A = 1.	 -DU*LD
C A**A Y
D (AY	 +AY	 -1.)*(1.	 -A)
D1 = A*C/((1.	 +J)*SY)
ts(l(J) = SY*DD/C
B1(J) _ 95*Ul/GY
b?-(J) _ 11*01*V2

22 B3(J) = -AY*DD*UY*(3.	 +C)/((1.	 +G1*A)
EBZ = -BZ*SQKT(3.*(7.	 +	 S73))/((1.	 +	 S73)*ZMAX**3)
AdZ = 1.	 -	 6bZ*SWRT((7.	 +	 S73)/lc.)*ZMAX**3
CAz = (19.	 +	 S73)*ZMAX*ZMAX/12•
ABdZ = AHZ.	 +	 68Z*(3.*CBZ -	 4.*ZKAX *ZMAX)*ZMAX*ZMAX/

1 S9RT(CBZ	 -	 ZMAX*ZMAX)
Du 32 K=ZPK2
GD = (K	 -K1)*DL	 -LO
8 = 1.
1F	 (ARS(DO).GT.ZMAX) GU TO 33
A - ChZ - UD*DU
AS = SCkT(A)
C = A6Z*AS	 + BBZ*(3.*CBZ - 4.*DD*DD)*DD*00
UU = A3Z*DC	 +	 98Z*AS*GD**3
L 1 = AS/C
D2 = BbZ *(C6Z*( -6. *CBZ	 +	 19. *00*DD)	 -	 12. *DD **4)*DU /(A*C)
GO TO 34

33 IF	 (DD.LT * O.) B	 =
A = 1.	 -((DO	 -d*Z.MtX)/(1.	 -ZMAX))**2
C = A**AZ
U = (AZ	 +AZ	 -1.)*(1.	 -A)
DG B*ZMAX	 +	 A66Z*(OU, -	 b*ZMAX)/C
D1 A*C/((1.	 +	 D)*ASBZ)
D2 = -(AZ	 +AZ)*(00	 -B*ZMAX)

1 *(3.	 +D)/((1.	 +0)*A*(l.	 -ZMAX)**2)
34 Z(K) = SCAR*UO

Cl(K) _ 95*CI*WliDZ
C2(K) = tDl*Dl*w2

32 C3(K) _ 9:*DZ*D2
RETURN
Ehr)

61



 a
1

SUBROUTINE	 SINGL	 (NC,NZ,	 SY(1,KTEI,KTE2,CHORD0,
1 SitEtPI, SwEEP2, SWEEP, DIHEDIPDIHcG2, DIHtCp
2 ZS,XLE,YLE,XC,XZ,XZZ,YC,YZ,YZZ,
3 Z,Ci,C2,C3,F1p):2,E3,t4,t5,IND)

C GENERATES	 SINGULAR	 LINE	 FOR	 SCUARE	 R00T	 TRANSFORMATION
C ► MENSION	 ZS(1),XLL(I)PYLE(1),XC(i),XL(I),XZZl11,

1 YC(1),YZ(1),YZZ(1)9L(1),C1(1), CZ( I)#C311),
2 E1(1),E2(1),E3(1),E4(1),E5(I)
DO 2 K=I,NC
E4(K)	 _	 QN

2 E5(K)	 =	 00
^^K1	 = 2

K2	 = NZ
1F	 (KSYM.EG.0)	 GO	 TO	 11
K1	 n 3 1
K2	 = NZ	 +2
KT1	 = 3

11 DO	 12 K=K1,K2
IF	 (Z(K).LT.ZS(1))	 Kltl	 =	 K	 +1

IF	 (Z(KI.LE9ZS(NC))	 KTc2	 K
12 CONTINUE

B	 = CHORDO a
Si	 =	 TAN(SwtEPi)
S2	 =	 TAN(SwEEPL)
T1	 =	 TAN(DIHLCI)
T2	 -	 TAN(DIHEDZ)
CALL	 S P L I F	 ( 1, NC,ZS, XL. ,ci,E2,F3,1 ► S1,1,S2,G,0.,iND)

` CALL	 INTPL	 (KTEI,KTE2,Z,)(C,l,N(,.tZS,XLE,c1,t2,E3,0)
CALL	 INTPL	 (KTEI,KTL2,Z,)(Z,l,NC,ZS,cI,E2,E3,E4,0)
CALL	 INTPL	 (KTEI,KTE2,L,XZZ,I,NC,ZS,E.2,c3,t:4,E5pO)
CALL	 S P L I F	 (IPNC,ZS,YLE,EI,E2,E3,1,T1,1,T?-,(J,U.,iND)

' CALL	 INTPL	 (KTEI,KTE2,Z,YC,I,hC,ZS,YLE,EI,E2,E3,0)
CALL	 INTPL	 (KTEI,KTE2,Z,YZ,l,NC,ZS,El,E2,E3,t4,0)
CALL	 INTPL	 (KTEI,KTt[, Zip YZZ,IPNC,ZS,E2,L3,E4,E5,U)
S	 =	 B*TAN(SwEEP)

S1	 -	 B*Sl
S 	 =	 3*<k
T	 =	 B*TAN(DIHED)
T1	 = B*T1
T2	 3 * T 2
XC(2)	 =	 3.*(XC(3)	 — X"	 4) 	 +XC(5l
YC(2)	 =	 39*(YC(3)	 — YC(4))	 +YC(5)
IF	 (KSYM.t4E.0)	 GO	 TO	 31
N	 = KTF.1	 —1
DO 22 K=K1,N '1
ZZ	 =	 (Z(K)	 —Z(KTtl))/B s

A	 =	 EXP(ZZ9

XC(K)	 =	 XC(KTCI)	 +S*ZZ	 — (SI	 — S)*(1.	 —A)
YC(K)	 =	 YC(KTE1)	 +T*ZZ	 —(T1	 — 1)*(1.	 —A)
XZ(K)	 _	 (S	 +(S1	 — S)*A)/(a 3
YZ(K)	 _	 (T	 +(T1	 — T)*A) /(S N
XZZ(K)	 _	 (Sl	 —S)*A/(8*6)

22 YZZ(K)	 _	 (11	 —T)*A/(p*B)
31 N	 =	 KTE2	 +1

1
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DL 32 K=N,K2
ZZ = (Z(K)	 —Z(KTE2))/B
A n EXP(—ZZ)
XC(K) = XC(KTE2)	 +S*ZZ	 +(S2
YC(K) = YC(KTE2)	 +T*ZZ	 +(T2
XZ(K) _ (S	 +(S2	 —S)*A)/E
YZ(K) _ (T	 +(T2	 —T)*A)/B
YZZ(K) _ — (S2	 —S) *A /(B*B)

32	 YZZ(K) n — (IZ	 —F) *A /td*B)

PETUFN
E%D

—S)*(l*	 —A)
— T)*(l * 	—A)

SUBROUTINE SURF	 (ND,NEsNCsNXsNZ,ISYMvKSYMsKTEIPKTE2,SCAL,
1 YAw,AO, Z,ZSsXCsYCsSLUPT,TRAIL.#X5PYS,NP,
2 ITFI,ITE2,IV,SO,ZO,xPsYN,D1,D2,D3sXsY,1NU)

C INTEF,POLATES MAPPED	 6ING	 SURFACL	 AT	 MESH PUINTS I
C INTEPPOLATION IS	 LINcAi-t	 IN	 PHYSICAL	 PLANE

DIMENSION Su(NE,1)sXS(ND,1)9YS(ND,1)sZS(1)sSLOPT(1)sTRAIU(1)s
1 XC(1),YC(1),AO(1),Z(1),ZC(1),X(I)sY(1.)s
2 XP(1),YP(1),D1(1)s12(1)sD3(1),
3 IV(N-Esl),NP(1),ITtl(1),ITEZ(1)

P1	 = 3*1415926to35b979
TYAw TAN(YAM)
S1	 n * 1 * 5 C AL
1)x	 = 2*iKA J
Lh	 n NX/2	 +1 l

MX N X	 +1
m 	 = NZ	 +3
IVo 1	 — ISYM	 — ISYM	 —ISYM
IVl	 n — 1	 —ISYM
Du	 2 K=1,MZ
ITE1(K)	 = MX
ITE2(K)	 = 'mX I

DO	 2	 I n 1,MIX
IV(IsK)	 _ — 2

2 S0(IsK)	 = G*
r	 ,

K KTEi
K2 1

21 K2	 = K2	 +1
K1	 = K2	 —1
G 2	 = 1*
IF	 (ZS(K2) — Z(K))	 21,25,23

23 R2 (Z(K)	 —ZS(K1))/(ZS(K2)	 —ZS(Kl))
25 Rl 1.	 —R2

C P1*XS(1sKl)	 +R2*XS(1,K2)
CC S4RT((C	 +C)/SCAL)
DG	 32	 I = 2, NX
IF	 ((AO(I) +*t-,*CiX)*LT*—CC) 	 11	 =	 I	 +1
IE	 t(AO(I) --*5 *DX) *LT *CL) 	 I2	 I

32 CONTINUE
ITE1(K)	 = I1 k

c'
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IlE2(K)	 = 12

is

CC	 = AU(IZ)/CC
ZO M	 = Z(K) —TYAo*(XC(K)	 +Si*AO(I2)*AO(I2))
KK	 = K1
P	 = R1

41 N	 NP(KK)
Q	 = SURT(XS(IJKK)/C)/CC
DO 42 I=2sNX

42 X(I)	 _*AO(I)
ANGL	 = P1 +P1
u	 1.
v	 0.
DO 44 I = 1, N
R	 SQRltXS(I,KK)**2	 +YS(l,KK)**2)
IF (F.EQ.0.) GO TO 4.
ANGL	 ANCL	 +AiAN2((U*Y;(I,KK)	 —V*XS(I)KK))J

I	 (U*XS(IPKK)	 +V*YS(1,KK)) )
U	 XS(1,KK)
v	 = YS(1,KK)
R	 SQRT((R	 +R)/KCAL)
XP(I)	 = R*CUS(.:*AN(2L)
YP(I)	 = R*SIN(.5*ANGL)
GO TO 44

45 ANGL	 = PI
U	 —1.
v	 0.
XP(I)	 = U.
YP('I)	 G.

44 CONTINUE
ANGL	 = AT0 ( SLUPT'(KK) )
ANGL1	 ATAN(YS(lsKK)/XS(1,KK))
ANGL?	 ATAN(YS(NPKK)/XS(NpKK))
ANGLI	 ANGL — 95*(ANGLI —TRAIL(KK))
ANGL2	 ANGL — *(ANGL2 + iRAII (0 ) )
T1	 TAN(ANGL1)
TZ	 TAN(ANGL2)
CALL SPLIF (1,N,XP,YP, Dip D1,C3,i, TI P i,TZPCP0.,1tiD)
CALL INTPL (I1,12sX,Y,iot o!XP,YP,,D1,J2,C3,C)

X1	 .25 *XS(I,KK)
A	 SLOPT(KK)*(XS(1,KK)	 —X1)

8	 = 1./(XS(1,KK)	 —X1)
ANGL	 = P1 +PI
u	 = 1.
v	 0.
M	 = I1 —1
UO 52 I=2, M
Xk	 = .5*SCAL*X(I)**2
(;	 B *(XX	 —XI)
YY	 = YS(1,KK) +A*4LUM )/0
R	 SQRT(XX**Z +YY**2)
ANGL	 ANGL	 +ATAN2((U*YY — V*XX),(U*XX +V*YY))
u	 = XX
v	 = YY
R.	 = SQRT((R	 +R)/SCAL)
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57 Y(I)	 = K *SIN(.'*ANGL)
A	 SLGPf(KK1*(XS(h,kK)	 —X1)
8	 1./(XS(N,KK)	 —X1)
ANGL	 = 0
U	 1.
V	 0.
M	 I2 +1
GU 54 I=MPNX
XX	 = .F*SCAL0(I)**2
U	 = a * ( A X —Al)

YY	 YS(N,KK)	 +A*ALOG(0)/D
R	 = SQPT(XX**Z +YY**2)
ANGL	 ANGL +ATAN2((U*YY —V*XX),(U*XX +V *YY))

s	 U	 = kX

V	 = I 

P	 = SQPT(( p	+R)/SCAL)
54 Y(I )	 R*SIN(9 E*ANGL )

0	 = P*C*CC*CC
00 62 I s IP NX

62 SO(I,K)	 = SO(I,K)	 +0*Y(I)
IF (KK.EO.K2) GO TO 11
KK	 K2
P	 ? 2
GO TO 41

71 LO 72 I=IlP12
77 IV(I,K1	 2

M	 = t` —1
00 7A I=2sM

ZZ	 = Z(K)	 —TY4w*(XC(K)	 +S1*AO(I)*A0(I))

IF (ZZ.Gc.ZO(KTE1)) IV(I,K) = IVJ
74 CONTINUE

M	 = I2 +1
DG 7C I=MPNX
ZZ	 = Z(K)	 — TYA'w*(xC(K)	 +S1*AO(I)*AO(I))
IF (ZZ.GE.Z0(KTE1)) IV(I,K) = IVO

76 CONTINUE
K2	 - K2 —1
K	 = K +1
IF (K.LE.KTE2) GO TO 21
K1	 = 2
K2	 - NZ
IF (KSYM.c0.0) CO TG 61
K1	 = 3
K2	 = NZ +2

61 00 82 I=2,NX
ZZ	 = Z(K)	 — TYAW*(XC(K)	 +S1*AG(I)*AO(I))
IF (ZZ.L:..ZS(NC).ANG.ZZ.GE.ZC(KTEl)) 1V(I,K) = IVO

62 CONTINUE
K	 = K +1
IF (K.LL.K2) GO TO E1
N	 - KTE2
IF (YAWoLE.0.) GO TO 93
IO	 = ITEI(KTEZ)	 +1
OU 92 I=IC,LX
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rN	 N	 +1
92 ZG(N)	 =	 Z(KTE2)	 -TYAw*(XC(K1EZ)	 +S1*A0(I)*A0(I))
93 I	 n 	 ITE1(KTE1)

ZO(KTE1-1)	 -	 Z(KTcl-1)	 —TYAw*(XC(KTE1-1)	 +SI*AD(I)*AG(I))
ZU(N+1)	 =	 Z(KTE2+1)
DO	 102 K=Kl.,KZ
DO	 104	 I=2,NX
IF	 (IV(I,K).GT*C)	 GO	 TO	 104.
IF	 (IV(I+1,K+1).GT * 0 * Uk * IV(I-1,K+1).GT * 0)	 1V(1,K)	 =	 1V1
IF	 (IV(I+l p K-1).GT * O.OR * IV(I-1,K-I) * GT.^)	 IV(I,K)	 =	 1V1

_	 104 CCNTINUE
102 IF	 (S0(LX,K) * LT * 1.E-05)	 1V(LX,K)	 n 	 0 <

IF	 (KSYM.EQ * o)	 FLTURN
DO 112	 1-kPNX )

112 SO( I,2)	 _	 ^**(S^(I,3)	 —SO	 It 4))	 +SG(I,5)
` RETURN

END

i

SLORCUTINE	 ESTIM ?
C INITIAL	 ESTIMATE	 OF	 kE000ED	 POTENTI4L

COMMON	 G(193,26,4),SO(193,35),rU(131),ZO(131), (
1	 TV(193P35),ITE1(13	 ITL2(35),
2	 AO(193),A1(193),A2(193),A3(193),
3	 B0(26),P1(2b),B2(26),83(26),
4	 Z(35),Ci(35),Cz(35)PC3(35)P
5	 XC(35),XZ(35),XZZ(35),YC(3:),YZ(3:,),YZZ(35),
6	 NXPNY,NZ,KTEl,KTE2,ISYMPKSYMr SCALP SCALZ,
7	 YAW, CYAN, SYAw, ALPHA, CA, SA, FMACH, N1., h2, 1\ 1 3, 10

MX	 NX	 +1
KY	 =	 NY	 +1
MY	 NY	 +2
MZ	 NZ	 +3
DO	 12	 I=1,193
DO 12 J = 1, 26
DO 12 K n IP4

12 G( I,J,K)	 00
K	 1

21 DO 22 I=2,NX
G(I,KY+1,1)	 n 	 0.
IF	 (IV(I,K)*LT*2)	 GO	 TO	 22
DSI	 =	 SO(1 +I,K)	 —SO(I— I,K)
DSK	 =	 SO(I,K +I)	 —SO(l,K-1)
SX	 =	 A1(1)*DSI
SZ	 =	 C1(K)*DSK

FH	 -	 AO(I)*ACID	 +50(I,K)*SO(I,K)
H	 =	 1*/FH
AL	 -	 —AO(I)*XZ(K)	 —SO(I,K) *YZ(K)
BZ	 -	 -A.O(I)*YZ(K)	 +SC(I,K)*XZ(K)
HZ	 -	 AZ*SX	 -8Z	 +FH*SZ
FYY	 =	 1 *	 +SX*SX	 +H*HZ*HZ
FXY	 n 	 SX	 +H*AZ*HZ
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Y

v	 = SA*be(l)	 CA*S0( I,K)
U	 = CA*AU(i)	 +SA*SO(I,K)

w	 = SYA6 +CA*XZ(K)	 +SA*YZ(K)
G(I,KY+I,l) = G(I,KY-1,1)

1	 +(V*(1.	 — r*BZ*HZ) —U*FXY —w*HZ)/(FYY*B1(KY))
22 C04TINUE

6UFFtk OUT(N3,1) (G(1,1,1),G(NXPMY,1))
IF (UNIT(N3).GT90.) GO TO 41
BUFFER OUT(N1,1) (G(l,l,i),G(MX,MY,l))
IF (UNIT(Nl).GT.G.) GO TO 41
K	 = K +1
IF (K.LEoMZ) GO TO Z1
K1	 = KTE1 —1
K2	 = KTE2 +1TEZ(KTEZ)	 —NX/2
UO 32 K=K1,K2

32 EC(K)	 = D•
IC	 = 1
RETJPN

41 10	 = G
kETURN
LND

SURRGUTINE MIXFLU
C	 SULUTION OF EQUAT.IONS FOR MIXEC SUBSONIC AND SUPERSONIC FLOW
C	 USING. ROTATED DIFFERENCE SCHEME

CCmMON	 C(193,26,4), SO( 143,35),EO(131),ZO(131),
1	 IV(193,35)9I1cl(B5),ITE2(35),

2	 AU( 193),A1(193),A2(193),A3(193),
3	 8C(26),81(26),82(26)PB3(26)p
4	 Z(3'),C1(35),CZ(35),C3(35),
5	 XC(35),XZ(35),XZZ(35),YC(35),YZ(35),YZZ(35),
6	 NX,PtY,NZ,KTEl,KTE2, ISYMPKSYM,SCAL,SCALZ,
7	 YAW,CYAN,SYAW,ALPHA,CA, SAP FMACH,NI,N2,N3,10
COMMt1N/FLG/ ST4IP,P1,P?,P3,BETA,FRPIR,JR,^!R,DG,IG,JG,KG,NS
CGM^1CN/SwF/ GK1(193,26),GK2(193,26),

1	 SX(193),`Z(193),SXX(193),SXZ(193)PSZZ(193)1
2	 ;O(193),F1(193),C(193),D(153),
3	 G10(26),G20(26),G3G(26),G4C(Zt),G1(26),GZ(26),
4	 11,i2,K,L,NOYLX,14X,KY,MY,TI,AAG,QlpQ2, TYAW,S1

LX	 = N 	 +1
MX	 NX +1
KY	 = 1Y +1
MY	 NY 42
TYAW	 SYAW/CYAw
S1	 .5*SCAL
UX	 2./NX
T1	 = DX*C'X
AA!)	 = 1./FMACH**Z +.2
Ql	 n 2./P1
Q2	 s 1./P2
F R 	 = U.

t

	
67

r



I 	 =	 0

r

JR	 0
KR	 = 0
DG	 = 0.
I 	 = 0
J 	 0
KG	 • U
NS	 0
K1	 • 2

V	 IF	 (FMACH* GE.l.)	 K1	 =	 3
K2	 - NZ
IF	 (KSYM.EQ.0)	 GO	 TO	 1
K1	 =	 3
K2	 = NZ	 +2

1	 F	 =	 ABS(.:*STRIP*NX)
L	 =	 F
IF	 (L.EQ * NX/2)	 L	 =	 L	 — i
I1	 • Lx	 —L
I2	 =	 LX	 +L
IF	 (I.EQ.G)	 I2	 -	 LX	 —1
DU 2	 L=1,3
BUFFER	 IN	 (Nl,l)	 (G(1,1,L),G(MX,(^Y,L))
IF	 (UNIT(N1).GT.0.)	 GG	 TL	 101

2	 CONTINUE
DO	 4	 J=1,!^.Y
DO 4	 i=1,MX
G(I,J,4)	 •	 G(I,J,1)
GK 	 H	 J)	 G ( I, J, I

-	 4	 GK2(I,J)	 GtI,J,1I
K	 2 j
L	 • 2 i
NO	 KTE1	 —1
IF	 (K.EQ.K1)	 GO	 TO	 21
BUFFER	 OUT(N2sl)	 (G(1,1,4),G(MX,MY,4))
IF	 (UNIT(N2).GT.O.)	 GU	 TO	 101
BUFFER	 IN	 (Nl,l)	 (G(1,1,4)PG(MX,MY,4))
IF	 (LNIT(N1).GT.O.)	 GO	 TO	 101
IF	 (KSYM.EQ.0)	 GO TO	 51

I	 LX
DSI	 =	 :^O(I+1,?)	 —S'3(1-1,3)
DSK	 =	 SOH94)	 —SO(I,2)
SX(I)	 =	 A1 ( 1)*DSI
SZ(I)	 -	 C1(3)*DSK
R	 =	 AMING ( 1,1V(I,K))
J	 = KY
DO 12 M=2,KY
YE'	 =	 B G(J)	 +SU(I,3)
H	 -	 R/(l.	 —R	 +YP*YP)
AZ	 =	 - YP*YZ(3)

I	 B 	 -	 YP*XZ(3)
A	 -	 H*AZ*A1(1)
B	 (H*(8Z	 —AZ*SX(I))	 —SZ(I))*Bl(J)
DGI	 -	 G(I+1,J,3)	 —G(I-1,,1,3)
DGJ	 =	 G (I,J+i,3)	 —G(I,J-1,3)
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G(I,.:.!!2) = G(T,J,4)	 +(A *DGI	 —B*DGI)/C1(3)
GK1(IsJ) - G(I,Js2)
G(I,Jsl) - 3.*(G(IsJs2)	 —G(IPJ,3))	 +G(IsJs4)
GK2(1,J) - G(7,J,'1)
R = 1.

12 J n J	 —1
J = KY	 +1
G(IsJs2) - G(I,Js4)	 +(A*DG]	 —6*0GJ)/Cl(3)
GKI(IsJ) - G(IsJs2)
GI Isis1) n 3.*(G(I,.J,2)	 IsJo31)	 +Gt1pJ,4)
GK2(IsJ) - G(IsJ,l)
M 8.NX /2	 —1
DG	 1 6	 II=1sM
I - LX	 —II
GO N 16

15 1 - LX	 +11
16 DSI = S0(1+!s3)	 — S 	 (1—i,3)

DSK - S0(Is4)	 —SO(I,2)
SX(I) - t.l(I)*CSI

DO	 IF	 J=2sKY
YP - HOW)	 +SO(i,3)
H - 1./(A0(l)*A0(I)	 +YP*YP)
AZ - —Ai:(Y)*Xc(3)	 —YP*YZ(3)

8Z = — A^)M *YZ(3)	 +YP*XZ(3)
S - -JIGN(1.PAZ)
A - H*AbS(AZ)*Al(I)
B - (H*(BZ	 —AZ*SX(1))	 —SZ(l))*61(J)
IP = 1	 +IFIX(Sl
IM I	 — I 	 ix	 Sl
DGI G(I,J,4)	 —o(IMsJ,4)
CGJ GfIsJ+'.,3)	 —G(IsJ-1, 3)
G(IsJsZ) _ (Cl(3)*G(IvJ,lt)	 +A*(G(IPsJsZ)	 +DGI)	 —B*GGJ)/

1 (C1(3)	 +A1
GK1(IsJ1 G(I,J,2)
G(IsJ,1) 3.*(G(I,.i,2)	 — G(I,J,3))	 +G(I.PJs4)

18 GK2(IPJ) = G(IsJsl)
J KY	 +1
G(I,Js21 (C1(3)*G(I,Js4)	 +A*(G(IP,J,2)	 +DGI)	 —B*DGJ)/

1	 (C1(3)	 +A)
GK1(IsJ)	 = G(IsJ,2)
IF (I.LT.LX)	 GL TO l5

14 CONTINUE
GU TO 51

L1 BUFFER OUT(N2,1) (G(1, L 4)sG(MXsMY,4))
DO 22 J = 1s MY
G10(J)	 - G(I2,Js2)
G20(J)	 - G(12-1sJs2)
G30(J)	 - G(I1sJ,2)

22 G40( J1	 = G(I1+1,Js2)
00 32 I-2sNX
DSI	 - 50(1+1sK1	 —SO(1-1sK)
DSK	 - SO(I,K+1)	 —SO(I,K-1)
D S I I	 - 5G(I +IsKI	 — SO(IsK)	 — SO(IsK)	 +SO(I-1sK)

r

f^
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1	 +A3(I)*D'i
OSKK	 = SO(I,K+1)	 — SO(i,K)	 —SO(I,K)	 +SG(I,K-1)

1	 +C3(K)*DSK
DSIK	 = SO(I+l,K+l) —SO(I-1,K+1) — SO(I+L K-1) +SO(1-1,K-1)
SX(I)	 = Al(I)*DS1
SZ(I)	 = C1(K)*DSK
SXX(I)	 = A2(I)*DSIL
SZZ(I)	 = C2(K)*DSKK

32 SXZ(I)	 = T1*A1(1)*C1(K)*DSIK
IF (I2.GT.11) CALL YcdtYcP
IF (UNIT(N2).GT.O.) GO TU 101
IF (k.LT.1(c) BUFFER IN (N1,1) (G(1,1,4),G(MX ► hY,4) )
IF (I1.GT.2) CALL XS%LEP
IF (UNIT(N1).G7.0.) GU TO 101

r	

IF (K.NE.KTEZ.CP9YAw.Lc.(,.) GL TO 51
10	 = ITE1(K)	 +1
CG 42 I=I(;,LX
M	 = NX +2 —I
E	 = G(M,KY,2)	 —G(1,KY,2)
NO	 = NO +1

42 EO(NO)	 = EC(NU)	 +P3*(r —EO(NU))
51 IF (K.EO.K2) GO TO 61

DO j2 J=1,MY
DO 52 I=1,MX
G(I,J,1)	 - G(L,J,2)
G(I,J,2)	 = G(I,J,3)
G(I,J,3)	 = GII,J,4)

52 G(I,J,4)	 G(I,J,1)
K	 K +1
GO TO 21

61 DO 62 L-2P3
BUFFER OUT(N2,1) (G(1,1,L),G(MXPMY,L))
IF (UNIT(N2).GT.G.) GO TO 101

6? CONTINUE
FR	 = 1.2*FP/AA0
10	 = 1
RETURN

101 IO	 = 0
RETURN
END

SUBRCUTINE YSWELP
C	 ROw RELAXATION

CGMMQN	 G(193,26,4),SO(193,3"),EG(131),ZO(131),
1	 1V(193,3:),1TE1(35),ITE2(35))
2	 AU(193),A1(193),A2(l93),A3(193),
3	 8G(26),61(26),B2(26),83(26),
4	 Z(35),Cl(35),C2(35),C3(35),
5	 XC(;,7),XZ(35) ,XZZ(35),YC(35),YZ(35),YZZ(35),
6	 NX,NY,NZ,KIEI,KTE2,ISYM,KSYM ► SCAL,SCALZ,
7	 YAM,CYA'N, SYAw,ALPHA,CA,SA,FMACH,NI,N2, N3, Ili
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COMMCN /FLU/ STRIP,PI,P2,P3,8FTA,FR,IR,JRPKR,DG,IG,JG,KC,NS
COMr1GN /SwF/ GK1(193,2b),GK2(193,26),

1 SX(193),SZ(193),SXX(193),SXZ(193),SZZ(193),
2 R0(193),K1(193),C(193),D(193),

3 G10(26),G20(26),G30(Zb),G40(26),G1(26),G2(26),
4 I1,IL, K,L,N3,0,MX,KY,MY,TI,AAO,Di3O2,TYAW,SI

J1 2
IF	 (F M ACH.GE.19) J1	 =	 3
C(I1-11 0.
D(I1-1) 0.
GO 12 I=I1, IZ
RU( I) = 1.
R1(I) = 1.
GK1(I,1) G(I,1,L)

12	 GK1(I,JI -1) G(I,J1—1,L)
J = J1
13 = I2

31	 BC - —T1*81(J)*Cl(K)
DL 32 I-I1,I3
AB = —11*Ai(I)*8l(J)
AC - T1*A1(I)*C1(K)
YP = SO(1pK)	 +80(1)
A = i.	 — RG(1)	 +AC(1)*A0(i)	 +YP*YP

FH - RO(1)*A

P = AO(1)*(4.*YP*YP	 —FH)

Q - YP*(4.*A0(1)*40(1)	 —FH)
A = XZ(K)*XZ(K)	 —YZ(K)*YZ(K)

B If (XZ(K)	 +XZ(K))*YZ(K)

AZ —AO(I)*XZ(K)	 —YP*YZ(K)

BZ = —AO(1)*YZ(K)	 +YP*XZ(K)

CZ = H*H*(P*A	 -u*3)	 —AC(I)*XZZ(K)	 —YP*YZZ(K)

UZ H*H*(0*A	 +P*3)	 — AO(I)+YZZ(K)	 +YP*XZZ(K)
DGI G(I+1,J,L)
DGJ G (1, J +1, L )	 — GK1( 1, J-1)
UGK - G(I,J,l+1)	 —GK1(1,J)
DGII - G(I+1,J,1)	 —G(L,J,L)	 —G(I,J,L)	 +G(I-1,J,L)

1 +A3(1)*DG1
DGJJ = G(I,J+1,L)	 —G(I,J,L)	 —G(I,J,L)	 +G(I,J-1,L)

1 —63(1)*DGJ
DGKK = G(I,J,L+l)	 — G(I,J,L)	 — G(I,J,L)	 +G(I,J,L-1)

1 +C3(K)*DGK
L)GIJ = b(I+1,J+1,L)	 — G(I-1,J+l p L)

1 —C(I+19J-1,L)	 +G(I-1,J-1,l)
DGIK - G(I+1.,J,L +1) 	—G(I +1,J,L-1)

1 —G(i—IPJ,L+1)	 +G(I—l,J,L-1)

DGJK - G (I, J+l, L+1)	 —G (I, J-1, L+1 )
1 —G(I,J+1,L-1)	 +G(I,J—l,L-1)
GX = Al(1)*UG1
GY = —81(J)*DGJ
U - GX	 — SX(1)*GY	 +CA*AO(I)	 +SA*YP

V = GY	 +SA*AO(I)	 —CA*YP
w - RG(I)*(C1(K)*DGK	 — SZ(1)*GY	 +SYAW

1 +CA*XZ(K)	 +SA*YZ(K)	 +H*(l!*AZ	 +V*BZ))

s

1.
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AU - U	 +W*AZ
AV - V	 +W*BZ
QXY = H*(U*U	 +V*V}
QQ - QXY	 +W*o^
.AA - DIM(AAOP•Z*QQ)
HZ = AZ*SX(1)	 — 3Z	 +FH*SZ(i)
FXX = 19	 +H*AZ*AZ
FYY - 1.	 +SX(I)*SX(I)•	 +H*HZ*HZ
FXY = SX(1)	 +H*AZ*HZ
BV = AV	 — AU*SX(L)	 —FH*W*SZ(1)
UU = H*Al *AU
VV = H*BV*BV
WW = FH*w*W
UV = H*AU*BV
u 6 = AU*W
VW - BV*W
AXX = K1(1)*(FXX*AA	 —LU)
All = FH*AA	 — Wig
AXZ = (RIM	 +R1(1))*(AZ*AA	 —Uw)
R = — (AXX*SXh(I)	 +A7Z*SLZ(I)	 +AXZ*SXZ(L))*GY

1 +T1*(AA*(CZ*GX	 +(GZ	 —SX(I)*CZ)*GY)
2 —H*(CA*(AU*AU	 — AV*AV)	 +(SA	 +SA)*AU*AV
3 —UXY*(U*AC(I)	 +V*YP
4 +(W	 +w)*(AC(i)*AZ	 +YP*BZ)))
5 — Ww*(CA*XZZ(K)	 +SA*YZZ(K))	 — w*w*(U*CL	 +V*DZ))
AXT = ABS(AU*A1(I))
AYT = ABS(8V*B1(J))
AZT' = ABS(FH*W*Ci(K))
A - RO(1)*BETA*AA/AMAX1(AXT,AYI,AZTs(1. 	 —RO(L)))
AXT = A*AXT
AYT - A*AYT
AZT = A*AZT
IF	 (QQ.GE.AA) GO TO 33
AXX - AXX*42(1)
AYY = (FYY*AA	 —VV)*BZ(J)
All - All*C2(K)
AXY = — R1(I)*(FXY*AA	 +UV)*(AB	 +A31

AXZ n AXZ*AC
AYZ - — R1(I)*(HZ*AA	 +VW)*(BC	 +BC)

BP - AXX
BM = AXX

B - — AXX	 — AXX	 —01*(AYY	 +All)
R = AXX*DGIT	 +AYY*DGJJ	 +All*DGKK

1 +AXY*DGIJ	 +AYZ*DGJK	 +AXZ*DGiK	 +P
GO TC	 35

33	 NS - NS	 +1
S - SIGN(1.,U)
IM - I	 —IFIX(S)
IMM - IM	 —IFIX(S)
AXX = UU*AZ(I)
AYY - VV*B2(J)
All - WW*C2(K)
AXY = d,*S*UV*AB
AXZ = 8.*S *UW *AC
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AYZ = d.*VN*BC
BXX = (FXX *Qo 	-UU)*AZ(I)
EiYY = (FYY*00	 -VV)*82(J)
BZZ = (FH*QQ	 -WW) *CZ(K)
5XY = - (FXY *QQ	 +UV)*(AB	 +AB)
BXZ = (AZ*QQ	 -Uw)*(AC	 +AC)
BYZ = -(HZ*QQ	 +VW) *(dc 	+8c)
AG = AA/QQ
DELTAG = BXX*DGII	 +BYY*DGJJ	 +BZZ*DGKK

1 +BXY*DGIJ	 +BYZ*CGJK	 +BXZ*DGIK
(GII = G(I,J,L.)	 -G(IMj,,.I,L)	 -G(IPPJ,L)	 +G(IMM,J,L)

1 +A3(I)*DGI
DGJJ = G(I,J,L)	 -G(I,J-1,L)	 -G(I,J-1,L)	 +GKI(I,J-2)

1 —B2(J)*DGi
DGKK = G(I,J,L)	 —GtI,J,I.-11	 —G(I,J,L-1)	 +GK2(I,JI

1 +C3(K)*DGK
DGIJ = G(I,J,L)	 -G(IMYJ,L)

1 -G (I, J-1, L )	 +G (I I^, J-1, L )
DGIK = G(1,J,L)	 -G(I,J,L-1)

1 -G(IM,J,L)	 +G(IM,J,L-1)
CGJK = G(I,J,L)	 -G(I,J,L-1)

1 -G(I,J-1,L)	 +G(I,J-1,1-1)
GSS = 4XX *GGII	 +AYY*DGJJ	 +All *LGKK

1 +AYY*DGIJ	 +AYZ*DGJK	 +AXZ*DGIK
H n .5*(AO	 -le1*(AXX	 +AXX	 +AXY	 +AXZ)
ti p = 4G*6Xx	 -(1.	 -5)*B
BM AG*BXX	 -(1.	 +S)*B
B -AC*(3XY	 +BXX	 +Q2*(BYY	 +BZZ))

1 +(AC	 -1.)*(2 * *(AXX	 +AYY	 +All)	 +AXY	 +AYZ	 +AXZ)
K (AD	 -1.)*GSS	 +AQ*DELTAG	 +R

35 IF	 CARSIR).Lc.AE!S(FP)) GU TO 37
Fk R
IR I
JR J
KR K

37 k = R	 -AYT*(GK1(I,J-1)	 -G(I,J-LL))
1 -AZT*(GK1(I,J)	 -G(I,J,L-1))
i n B	 -AXT	 -AYT	 -AZT
BM = BM	 +AXT
6 n 1./(3	 -am*C(I--, y)
C(I1 = B*BP

32 C( I) n B*(R	 —EM*D(I-1))
CG = G.
I = I3
CLj	 42	 M=I1,I3
CG D(I)	 —C(I)*CG
IF	 (A6S(CG),I.E.A8S(DG)) GO TO 43
DG = CG
I I
J J
KG K

43 GKZ(t,J) = GKI(I,J)
GK1(IoJ) n G(I,J,L)
G ( I	 J,L) G(I,.f,L)	 —CG
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42 I	 = I —1
J	 = J +1
IF W —KY) 31, 1,61

51 IF ( I2 * GT * ITL2 ( K)) 13 n iTt2(K)
IF (ITEZ( K).EO.MX) IB = LX
DO 52 I n I1,I3
LV	 - IABS ( 1	 —IABS ( IV(IsK)))
ROM	 - AMINO(LVoIABS(IV•(lpK)))

52 R1( I)	 = LV

GO TO 31
61 N	 = NO

I	 = LX +1
IF (K * LT * KTE1 * OR * K * GT * KTL2) GO TO 71
IO	 = NX +2 —Ij
DO 62 I=IO,I3
A	 = 1.	 —RO(I)	 +AO(I)*AU(I)	 +S')(1,K) * Su(I)K)
H	 RO(1)/A
PH	 R  I 
AZ	 — AC ( I)*XZ(K)	 — SG(lpK) * YZ(K)
BZ	 —AG(I)*YZ(K)	 +SO(I,K)*XZ(K)
HZ	 AZ*SX(I)	 — 6Z	 +FH*SZ(J)
FYY	 - 1.	 +SX(I)*SX(!)	 +H*HZ*HZ
FXY	 = SX(l)	 +H*AZ*HZ
DGI	 = G(I+l)KY,L)	 —G(I-1/KY.PL)
DGK	 - G(IsKY.PL+1)	 —GK2(1PKY)
V	 = SA*A 0 I) —CA*SC(I,K)

U	 = A1(I)*DGI	 +C4*AGO)	 +SA.*S0(1.K.)
w	 = C1(K)*DGK +SYAw +CA*XZ(K)	 +SA*YZ(K)

62 G(LKY+1,L) - G(I,KY—1,L)
1	 +(V*(1.	 —H*BZ*HZ)	 —U*FXY —w*HZ)/(FYY*81(KY))
I	 = IO
1F (I0 * NE * iTtl(K)) GC TO 71
E	 = G(I3sKYPL)	 —G(IOsKYPL)
NO	 - NO +1
EO(NO)	 = EO(NO) +P3*(E —t0(NO))
N	 = NO

71 IF ( I * LE.Il) RETURN
I	 = I —1
E	 = 0.
IF (IV(IsK).NE.1) GO TO 77
ZZ	 = Z(K)	 — TYAW*(XC(K)	 +S1*AO(I)*AO(I11

73 IF (ZZ.GE * ZO(N-1)) GO TO 75
N	 = N —1.

GO TO 73
75 R	 = (ZZ	 —70(4-1))/(ZO(N)	 —ZO(N-1))

E	 - R*EG(N)	 +(1. —K)*EO(N-1)
77 M	 = NX +2 —I

G(I,KY+1,L) = G(M•KY-1,L) —F
G(MPKY+1,L) = G(I,KY-1,L) 	 +E
GK2(MPKY)	 - GK1(M,KY)
GK1(M,KY)	 = G(MPKYPL)
G(MPKYsL)	 = G(IPKY,L)	 +E
GO TO 71
FND
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_SUBRCUTINt XSwEPP
C	 CGLUNN RELAXATIC.1%

CGM"tCN	 G(193,26,4), SO( 143P35),EG(131) PLO (131),
1	 IV(193,35),I1=1(35),1TE2(35),
2	 AO(193),A1(193),A2(193),A3(193),
3	 dC(t5),al(2b),B2t26),83(2b),
4	 Z(35),C1(35),C2(35),C3(351,
5	 KC(35),XZ(35),XZZ(35),YC(3°),YZ(35),YZZ(35),
6	 NX,NY,NZ,KTL1?KTE2,ISYM,KSYM,SCAL,SCALZ,
7	 YAw,CYAW,SYAw, ALPHA PCAPSA,FMACH, NIP N2,N3,IG

COMMLN/FLG/ S1R1°,P1,Pr?,a JPbf TAP FR,IR,JR,KR,DG,IGPJG,KG,NS
COMMGN/SwP/,GK1(193,26),GK2(193p26).p

1	 SX(193),5Z(193),SXX(193),SXZ(193),SZZ(193),
Y
	 2	 RO(193),Rl(193),C(193),D(143),

3	 G10(26),G20(2b),G3U(Zb),G4C(26),G1(26),G2(20),
4	 11, 1 L, K, L, N-), LAP M X, KY, MY, TL AA 0, 01, Q2, T YA w, S1

N	 NO

JI	 2
IF (Fr,ACH G_.I	 J1	 3
CtJI-11	 0,
D(J1-1)	 L.
S	 1.
I1	 ^ 1
1	 = I2 #1
DO 12 J=2,KY
RG(J)	 = 1.
R1(J)	 n 1.
G1(J)	 = G10(J)

12 GZ(J)	 = G20(J)
21 1 	 = 1 + I i

IM	 = I —il
12	 = KY
IF (IV(I,K).LT.2.AND * I.GT.LX) J2	 NY
LV	 = IAFS(1	 —IABS(1V(I,KII)

RL(KY)	 = AMIh+1(LV,LAdS(IV(1,K)))
F1(KY)	 = LV

11C	 = T1*Al(I)*C1(K)

DU 32 J-J1,JZ
Ab	 = —T1*AM )*dl(J)
BC	 - —T1*61(J)*CI(K)

YP	 = SOlI,K)	 +60(J)
A	 - 1.	 — RO(j)	 +AG(1)*AC(1)	 +YP*YP
H	 = RC, J 
FH	 = RO(J1*A

P	 = AO(1)*(49*YP*YP —FH)
C	 = YP*(4.*A(,(I)*AO(I)	 -FH)
A	 = XZ(K)*XZ(K)	 —YZ(K)*YZ(K)
B	 = (XZ(K)	 +XZ(K))*YZ(K)

AZ	 = —AO(I)*XZ(K)	 —YP*YZ(K)

BZ	 - —AC(1)*YZ(K)	 +YP*XZ(K)

CZ	 = H*H*(P*A — Q*B)	 —AG(I)*XZZ(K)	 —YP*YZZ(K)
DZ	 = H*H*(Q*A +P*B)	 —AO(I)*YZZ(K)	 +YP*XZZ(K)
DGI	 = S*(G(IP,J,L)	 —Gl(J))

DGJ	 = G ( I, J+1, L )	 — G( 1, J-1, L)
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DGK = G(I,J,L+1)	 —GK1(I,J)
DGII = G(I+1, J, L)	 —G(I,JoL)	 —G(I,J,L)	 +G(1-1, J, L)

1 +A3(1)*DGI

D GJJ = G(IsJ+1,L)	 —G(1,J,L)	 — G(1,JPL)	 +G(I,J-1,L)
1 —B3(J)*DGJ

DGKK - G(1,J,L+I)	 — G(1,J,LI	 — G(I,J,L)	 +G(1,J,L-1)
1 +C3(K)*DGK

DGiJ = G( I+1, v+l, L 1 	 — G( 1-1, J+1, L)

1 -G(I+1,J—L,L)	 +G(I-1,J—IrL)
DGIK - G(I+1,J,L+1)	 —G(1+1,J,L-1)

1 —G(I— L J,L+l)	 +6(1-1,j,L-1)
DGJK - G(I,J+i,L+l)	 —G(i,J-1,L+1)

1 —G(I,J+ls1-1I	 +G(1,J-1,1-1)
GX = Al(I)*DGI
GY - — 51( . ► ) *DGJ
U - GX	 —SA(1) *GY 	 +CA*A3(I)	 +SA*YP
V = G 	 +SA *A •J( I) 	—GA*YP
W - Rl,(J)*(C1(K)*DGK	 — SZ(I)*GY	 +SYAW

1 +LA*XZ(K)	 +SA.*YZ(K)	 +H*(U*AL	 +V*BZ))

AU = U	 +w*AZ
AV = V	 +W*BZ

QXY = H*(L*U	 +V*V)
QQ = Q X Y	 +W*W
AA DIM(AA(i,92*QG)
HZ AZ*SX(I)	 — BZ	 +FH*SZ(I)
FXX = 1.	 +H*AZV AZ
FYY 1.	 +SX(I)*SX(I)	 +H*HZ*HZ

.FXY = SX(I)	 +H*AZ*HZ

BV = AV	 — AU*SX(l)	 —FH*w*SZ(I)
UU = H*kL;*AU

VV = H*BL*BV

WW
=

FH*W*W

UV = H*AU*BV

Uw = AU*W
Vw = aV*W

AXX = R1(J)*(FXX*AA	 —UU)

All = FH*AA	 —Wig
AXZ = (RI(J)	 +K!(J))*(AZ*AA	 —UW)
R = — (AXX *SXX(l)	 +All*SZZ(I)	 +AXZ*SXZ(i))*GY

1 +Tl*(AA*(CL*GX	 +(GZ	 —SX(I)*CZ)*GY)

2 -H*(CA*(AU*AU	 -AV*AV)	 +(SA	 +SA)*AU*AV
3 —QXY*(U*AL(I)	 +V*YP
y +(W	 +W) *(40(I)*AZ	 +YP*6Z11)
5 —wW*(CA*XZZ(K)	 +SA*YZZ(K))	 — W*N *(U*CZ	 +V*UZ))

AXT = ABS(AU*A1(I))
AYT = ABS(BV*bl(J))
AZT = ABS(FH*w*C1(K))
A = RG(J)*BETA *AA /AMAX1(AXI,AYT,AZT,(l.	 —RC(J)))
AXT - A*AXT

AYT = A *AYT
AZT = A*AZT
IF	 (QQ.GE .AA) GO TO 33
AXX = AXX*A2(I)

AYY = (FYY*AA	 —VV)*82(J)

76

i



33	 NS = NS	 +1
AXX - UU*A2(I)
AYY a VV*82(J)
All = WW*C2(K)
AXY = 8.*S*UV*AB
AXZ = a. *S *UW *AC
AYZ n 8.*V4*BC
bxx = (FXX*QQ	 —JU)*A2(I)
6YY = (FYY*QQ	 —VV)*32(J)
BZZ = (FH*QQ	 —wW)*C2(K)
BXY = — (FXY*QQ	 +UV)*(A.B	 +AB)
BXZ n (AZ*QQ	 —UW)*(AC	 +A%)
BYZ = — (HZ*QQ	 +VW)*(BC	 +BC)
A Aa/Q0
fELTAG BXX*DGII	 +BYY*DGJJ	 +BZZ*CGKK

1 +3XY*DG1J	 +NYZ*DGJK	 +BXZ*JGIK
DGII G(I,J,L)	 — G(IM,J,L)	 —G(IM,J,L)

1 +A3(I) *DG 1
DGJJ G(i,J,L)	 —G(I,J-1,L)	 —G(I,J-1,L)

1 —B3(J)*DGJ
DCKK G(IsJ,L)	 —G(I,J,L-1)	 —G(IPJ,L-1)

I +C3(K)*DGK
DGIJ = G(I,J,L)	 —G(IM,J,L)

1 —G(1,J-1,L)	 +G(IM,J-1,L)
DGIK G( Ii, J,L)	 —G(I,J,L-1)

1 —G(IM,J,L)	 +G(IN,J,L-1)
DGJK G(I,J,L)	 —G(IrJ,L-1)

1 —G(I,J-1,L)	 +G(I,J—l,l-1)
GSS n AXX*DGII	 +AYY*DGJJ	 +All*DGKK

1 +Axl*DGIJ	 +AYZ*LGJK	 +AXZ*DGLK
SP n AQ*BYY

s

r

+G2(J)

+G (I, J-2, L )

+GK2(I,J)

All	 a 4ZZ*C2(K)
AXY	 =	 K1(J)*(FXY*AA +LV)*(AB	 +A3)
AXZ	 = AXZ*AC
AYZ	 = —P1(J)*(HL*AA +V^k	 BC +BC)
BP	 = AYY
BM	 = AYY
B	 —AYY —AYY —Q1*(AXX +All)
R	 AXX*GSII +AYY*DGJJ +AZL*CGKK

1	 +AXY*DUIJ +AYZ*LGJK +AXZ*DGIK +R
GO TL 35

BN, = BP — (AQ	 — i.) *(AYY	 +AYY	 +AXY	 +AYZ)
8 a — B P — BP	 — Q2*AQ* (EXX	 +BZZ )

1 +(AG —1.)*(29*(AXX	 +AYY	 +All)	 +AXY
k n (AG — 1.) *GSS	 +AQ*UtLTAG	 +R

35	 IF (ABS(R).LE948S(FR)) GO TO 37

F R = R.
I  = I
J  = J
KR = K

37 R = h — AXT*(G1(J)	 —G(IM,J,L))
1 —AZT*(GK1(I,J)	 —G(I,J,I-1))
B 8 —AXT	 — AYI	 —AZT

BM = BM, +AYT

+AYZ +AXZ)
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B 1./(8	 —BM*C(J-1))
C(J) B*8P

32	 0(J) B*(k	 —BM*D(J-1))
CG 0.
J = J2
DO 42	 M-J1,J2
CG = 0(J)	 —C(J)*CG
IF	 (A8S(CG)9LE.ABS(DG)) GO TO 43
DG - CG
IG = I
JG = J
KG = K

43	 GZ(J) = G1(J)
G1(J) = G(I,JPL)

GK2(INJ) - G K 1 ( I P J )

GK1(L,J) - G(IsJ,L)
G(INJoL) - G(I,J,L)	 —CG

42 J = J	 —1
IF	 (IV(I,K).LT.2) GO TJ 51
A 1.	 —KO(KY)	 +AO(1)*AO(I)	 +SC(I,K)*SO(I,K)
H R0	 KY) /A

AZ — AO(1)*XZ(K)	 —SC(I,K)*YZ(K)
BZ - —AO(I)*YZ(K)	 +SG(I,K)#XZ(K)

HZ = AZ*SX(I)	 — BZ	 +FH*SZ(I)

FYY = 1.	 +SX(1) *^X(1) 	+H*HZ*HZ
FXY = SX(I)	 +h*AZ*HZ
DGI' - S*(G(IP,KY,L)	 —C2(KY))
DGK - G(I,KY,L+1)	 —GK2(IjKY)
V = SA*AO(I)	 — CA *SO(I,K)
U = A1(I)*DGI	 +CA*AG(I)	 +SA*SO(1,K)
W n C1(K)*DGK	 +SYAw	 +CA*XZ(K)	 +SA*YZ(K)
G(I,KY+1,L) -	 G(IsKY— L L)

1 +(V *(1.	 —H*BZ*HZ)	 — U*FXY	 —W*HZ)/(FYY*61(K.Y))
IF (I.NE.LTE1(K)) GO TO 61
M	 = NX +2 —1
E	 n G(MPKYPL)	 —G(IsKY,L)

NO	 - NO +1

HMO)	 - EO(NC) +P3*(E — EC, NO) 1
N	 = NO
GO TO 61

51 IF (I.GT.LX) GO TO 61
E	 = U.

IF (IV(IsK) * NE.l) C:0 TO 57
ZZ	 = Z(K)	 — TYAW*(XC(K)	 +Si *A.U(I)*AO(1))

53 IF (ZZ.GE .ZO(N-1)) GO TO 55
N	 N —1
GO TO 53

55 R	 (ZZ	 —ZO(N-1))/(ZO(N)	 —ZO(N-1))
E	 = R*EC(N)	 +(1.	 —R)*FO(N-d.)

57 M	 - NX +2 —1
G(Ij,KY+1,L) - G(M,KY-1,L) 	 —E
G(M,KY+1,L) - G(IPKY-1,L) 	 +E

GKZ(t^sKY)	 = GK1(M,KY)
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GK1(MPKY)	 = G(MsKYsL)	 'a
G(M,^YsL)	 = G(IsKY,L)	 +E

E1 IF (I.EQ.NX) GC TG 71
IF (I.EQ.2) RE TURN
I	 I	 +tI
GU TO 21	 ,+

71 S	 —1.
II	 = — 1	 j
I	 = I1 —1
DO 72 J=2sKY
G1(J)	 G30(J)	 r

72 G2(J)	 G40(J)
GL 'TG 21	 j
E NO

SUBRCUTINE VELD	 (KPL,SVs$M,CP,X,Y)
C	 CALCULATES SURFACE	 VELOCITY

C oil MCI G(193,2C,4),S0(193,35)sED(131),ZO(131),
1 IV(193,31),ITEI(35)sITE2(3.`),
2 QC(15:;),A1(1S3),A2(193),A3(193),
3 80(26)PEl(26),52(26),B3(2b),
4 Z(35)sC1(35).CZ(3	 )sC3(35)s
5 XC(35),XZ135),XZZ(35)sYC(35)sYZ(35),YZZ(35),

NX,NY,NZ,KTE1,KTt2s 1SYM,KSYMs SCALP SCALZ,
7 YawsCYAWPSYAw,ALFHAPCAsSA,FMACHsN1sN2sN3sIO
01MENSION SV(1),SM(1),CP(I)sX(1)sY(l)
11 =	 ITE1(K)
12 =	 ITE2(K)
J - NY	 +1
Q1 =	 02*FMACH**2
T1 =	 I.. / (.7*FMACH**2 )
DO	 12	 I=I1,I2
FH =	 AG(I)*AO(I)	 +S0(1sK)*50(IsK)
H 0.
IF	 (IV(IsK).NF.0) H	 -	 1./F4
AZ =	 - AC°(I)*XZ(K)	 —SO(IsK.)*YZ(K)

BZ -	 —AC(I)*YZ(K)	 +SO(IsK)*AZ(K)
DSI =	 SC(t +1,K)	 —53(I - 1,K)
DSK =	 SO(I,K+1)	 —S0(T,K-1)
S)< =	 41(1)*DS1
SZ =	 C1(K)*USK
DGI =	 G(I+1,J,L)	 —G(I—IPJPL)
DGJ =	 G(I,J+L,L)	 —G(L,J—lo-L)
DGK =	 G(Is^,L+1)	 —G(IsJ,L-1)
U -	 A1(I)*DGI	 +SX*81(J)*DGJ	 +CA*AO(I)	 +SA*SO(I,K)
V =	 — B1(J)*DGJ	 +SA*A((I)	 —CA*SO(L,K)
w =	 C,l (K) *DGK	 +>Z*61(J)*DGJ	 +SYAW

1 +CA*XZ(K)	 +SA*YZ(K)	 +H*(L*AZ	 +V*BZ)
QV =	 H*(U*U	 +V*V)	 +W+*w
SV(I) =	 SIGN(SQRT(QQ)sU)
IF	 (IV(I.#K).EQ.0) SV(I)	 -	 SV(I-1)	 +SV(1-1)	 —SV(I-2)
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ii

QQ
SM(I)
CP(I1
X(I)

12 Y(I)
RETURN
END

E

r= z

= FMACH*SV(I)/SQKT(CC
T1*(QQ**3.5 —1.)

= XC(K)	 +.5*SCAL*(A0(I)*A0(I)	 —SJ(I,K)*SQ(I,K))
= YC(K)	 +S(AL*AO(I)*SO(1,K)

.

SUBROUTINE CPLCT (I1,IL,FMACH,X,Y,CP)
C	 PLOTS CP AT EQUAL INTERVALS IN THE MAPPED PLANE

DIMENSION	 KODE(2).LINE(itG),X(1),Y(1).CP(i)
DATA	 KODE/1H ,1H+/
IwRIT	 6
WRITE (IwklT,2)

2 FORMAT(50FOPLGT OF CF AT 4GUAL 1NTcAVAIS IN THL MAPPED PANE/
1	 10HO	 X	 ,10H	 Y	 ,1CH	 CP )
CPO	 = ((1.	 +.2*FMACH**2)**3*5 —19)/(.7*FMACH**2)
DO 12 I = 1, 100

12 LINE(I)	 = KODE(1)
DO 22 1-11PI2
K	 = 30.*(CPO —CP(I))	 +495
K	 = MINC(lUO,K)
LINE(K)	 = KODE(2)
WRITF (IWF<lT,61(r) X(I),Y(I),GP(I),LINL

22 LTNE(KI	 n KODE(1)
RETURN

610 FORMAT(3F10.4Al0GAl)
END

SUBROUTINE FORCF (I1,I2,X,Y,CP,AL,CHORO,XM,CL,CD,CM)
C	 CALCULATES SECT10N• FORCE CUtFFICIENTS

DIMENSION	 X(1),Y(1),CP(1)
RAD	 = 57.295779:,130823
ALPHA	 = AL/RAD
CL	 = C.
CD	 n 0.
CM	 = 0.
N	 = I2 —1
DO 12 I=I1,N
DX	 n (X(1+1)	 —X(1))/CHriRD

DY	 = (Y(I+1)	 —Y(1))/CHORD
XA	 n (05 *(X(1+1)	 +X(I))	 —XM)/ChilRO

YA	 = 95*(Y(I+1)	 +Y(I))/CHORD
CPA	 = .5*(CP(I+1)	 +CP(I))
DCL	 = —CPA*DX
DCD	 = CPA*DY
CL	 = CL +DCL
CD	 n CU +DCD
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12	 CM = CM	 +DCD*YA	 —OCL*XA
DCL =	 CL*CUS(ALPHA)	 —CD*S!N(ALPHA)
CD n 	 CL*SIN(ALPHA)	 +CD*COS(ALPHA)
CL 7C 
RETJkN
tND

SUBROUTINE TCTFOR(KTEi,KTE2,CHLaKC,SCL,SCD,SCM,Z,XC,
1 CL,CD,CMPpCMR,CMY)

C	 CALCULATES TOTAL	 FORCE	 CG'-:FF1CItNTS,
0ImENSI0N CHOkD( 1), SCL(1),SCD(I	 ,SCM	 1),Z(1),XC(1)
SP4N =	 Z(KIE2)	 —Z(KTE1)
CL C•
CD G•
CMP 0•
C!'R =	 L •
Cm y G •
S 0•
N K TE2	 —1
DD	 12 K=KTEi,N
CZ i	 05*'(Z(K+1)	 —Z(K))
AZ =	 65*(Z(K+1)	 +Z(K))
CL =	 CL	 +0Z*(SCL(K+1)*C4 uRO(n +l)	 +SCL(K)*GHORD(K) )
CD =	 CO	 +0Z*(S0D(K+1)*CHGRU(K+1) 	 +SCD(K)#CHORD(K))
CMP z	 CMP	 +UZ*(CHUKL(K+1)*(SCM(K+1)*CNURD(K+11

1 —SCL(K+1)*XC(K+1)1
2 +C,N3R0(K) *(SCl(K)*CH0RD(K)

3 —SCL(K)*XC(K)))

ChtR =	 %MK.	 +AZ*DZ*(SCL(K+1)*CHUR0(K+1) 	 +SCL(K)*CHORD(K))
CMY =	 CMY	 +AZ*uZ*(SCU(K+1)*CHORC(K+1)	 +SCD(K)*CHQRD(K))

12	 S =	 S	 +DZ*(CHURU(K+l)	 +CrIUKt)(K))
CL =	 CL/S
co =	 CD/S
CMP . CMP*SPAN/S**2

CMR =	 (CMP	 +CMk) /(S*SPAN)

CMY =	 (C e Y	 +CMY)/(S*SPAN)

kETUkN
END

a

SUBROUTINE kEFIN

i

C	 HALVES	 MESH SIZi
COM'MEN G(193,2(-, 4),S0(193,35f,Eu(131)sZ3(131),

1 1V(193s35)j911E1(35),TTt2(35),
2 AO(193),A1(193),/2(193),A3(1.93),
3 d!^(26),81(2c1,BL(26),B3(261,
4 Z(35),C1(35),C2(35),C3(35),
5 XC(35),XL(35),XZZ(35)PYC(3`.)PYZ(35),YZ7(?^),
6 NX,NY,NZ,KTEI,KTE2,ISYM,KSYM,SCAL,SCALp,
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^R'	 ..	 .. _. , T	_..^. ^^ a	 fir.	 j_:. .^.^—^.	 .o.,	 '	 ..	 ,...... . I .,y^..e _r.-.t•.

7	 YAWsCYAWsSYAWsALPHAYCA,SA,FMACHr NIP N2PNBp10
MX	 = N 	 +1
KY	 = NY +1
MY	 = NY +2
m 	 NZ +3
MXO	 = NX/2 +1
MYO	 NY/2 +2
MZO	 NZ/2 +1
K	 = 1
IF (KSYM.Ea.Q) GO TO Li
MZO	 = NZ/2 ±3
BUFFER IN tNl,1I (G(1,1p1),G(MXO,MYOPI))
IF (UNIT(N1).GT.G.) Gil TO 4U1
K	 = 2

11 BUFFER IN (N1,1) (G(lsl,l),G(MXC,MYO,l)1
IF (UNIT(N).).GT.U.) GU TO 4C1
J	 NY/2 +1
JJ	 KY

21 1	 = MXO
II	 = MX

31 G(IIPJJ,1)	 = G(l,J,l)
I	 = I —1
II	 I I —2
IF (I oG To (A  GO 10 31
J	 = J —1
Ji	 = J 	 —2
iF (J.GT.G) GU TO 21
DO'42 J=19KY22
00 42 I 2 2P NXP Z

42 G(I.9Js1)	 = .5*(G(I+1,J,1)	 +G(l—I,J,i))
DU 52 I=1,MX
DO 54 J = 2, NYs 2

54 G(IsJ,l)	 _ .5*(G(INJ+1,1)	 +G(I,J—I,1))
52 G(Ij-hY,l) = 0•

BUFFER OUT(N291) (G(Li,l),G(MX,MY,l) )
IF (UNIT(N2).GT.0.) GO TO 401
K	 = K +1
IF (K.LE.MLO) GO TO 11
REWIND Ni
REWIND N2
BUFFER IN (N2,1) (G(lplpl)PG(MXyMYPl))
IF (UNIT(N2).GT.0.) GO TO 401
BUFFER IN (N2,1) (G(1s1,3),G(MX,MY,3))
IF (UNIT(N2).GT.CG.) GO TO 401
BUFFER OUT(Nlsl) (G(l,l,l),G(MXPMY,l))
IF (LNIT(Nl).GT.C.) GO TL 4G1
K	 = 1
IF (KSYM.NE.0) K = 2

111 K	 = K +1
DG lit J=11MY
DO 112 I=I,MX

112 G(IPJ,2)	 _ .5*(G(I,J,1)	 +G(I,Js3))
DO 122 L=2s3
BUFFER OUT(N1,1) (G(l,i,a_),G(MX,MY,L))

82

n

2

t



83

k-1

IF (UNIT(N1).GT.09) CO TO 401
122 CONTINUE

IF (k.EQ.MZG) GC TC ZO1
DU 132 J-1sMY
CO 122 L=1,MX

132 G(I,J,l)	 - G(Ipjp'3
BUFFER IN 012sl) (G(I,1j,3),G(MX,MYp3))
IF (LNIT(N2).GT.O.) GO TO 4U1
GO TO 111

Z(A REWIND Ni
REWIND N2
DO 202 L-1,3

Y
	 BUFFER IN (N1r1) (G(1.,i,L),G(MX,MYsL) )

IF (UNIT(^1).GT.O.) Gi TL 401
2C2 CONTINUE

BUFFER OL1T(N2p1) (G(1,1,1),G(MX,MYj,l))
IF (LNIT(N2).GT.O.) Gd TO 401
TYAW	 SYAM/CYAw
Si	 .7*SCAL
NU	 = KTG1 —1
& C ( N 0	 G.
K	 = 2
IF (KSYM9Nt.0) CO TO 251

211 N	 - NO
I	 = MXO +1
IF (K.LT.KTE1.O p .K.GT.KTEZ) Gu TO 231
11	 - ITEI(K)
I2	 - ITE2(K)
DO 212 I=11sI2
DSI	 = SO(I+IPK)	 —SJ(1—i,K)

DSK	 - SO(I,K+l)	 —SO(1PK-1)
SX	 = A1(I)*oS1
SZ	 - C1(K.)*DSK
R	 = AMIN(,(1rIV(IPK))
A	 - 1.	 — R	 +AJ(I)*AG(I)	 +SC(I,K)*SO(I,K)
H	 - R/A
FH	 - R*A
AZ	 - — A#-1(1)*XZ(K)	 —S((I,K)*YZ(K)

RZ	 - —AO(I) *YZ(K)	 +SO(I,K)*XZ(K)
HZ	 - AZ*SX —eZ +Ft,*SZ
FYY	 = 1. +SX*SX +H*HZ*HZ
FXY	 = SX +H*A.Z*HZ
DGI	 - G(I+1,KYP2)	 —G(1-1,KYY2)

DGK	 = G(I,KYr3)	 —G(I,KYol)
V	 - SA*AC(1)	 —CA*SU(I#K)
U	 = A1(I)*DG1	 +CA*AL(1)	 +3A*SU(I,K)

W	 - Cl(K)*DGK +SYAW +CA*XZ(K) +SA*YZ(K)
212 G(IPKY+1,2) - G(IsKY-1,2)

1	 +(V*(1.	 —H*SZ*HZ) —U*FXY —W*HZ)/(FYY*61(KY))

NO	 - NO +1

ECM)	 = G(I2,KYs2) — G(11,KY,2)
N	 = NO
I	 = I1
IF (K.NE.KTE2.CF.YA419Ls.09) GO TO 231



--- ^- yr

221 I	 1 +1
M	 NX +2 —I
NO	 = NO +1
EO(NC)	 G(MsKY,2)	 —G(I,KYsZ)
IF (I.LT.MXO) GO TO 221
1	 = I1

231 I	 = I —1
E	 = 0.
IF (IV(I,K).NE.i) GO TO 237
ZZ	 = Z(K)	 — TIAw*(XC(K)	 +S1*A0(I)*A0(1))

233 IF (ZZ9GE.Z0(N-1)) Gtr TO 235
N	 = N —1
GO TO 233

235 k	 = (ZZ —ZO(N-1))/(ZO(N)	 —ZO(N-1)l
E	 = R*EC(N)	 +(1.	 —R)*EO(N-1)

Z37 M	 = NX +2 —I

G(IsKY+L 2) = G(MsKY—ls2) —E
G(MsKY +ls2) = G(IsKY -1s2) 	 +E
IF (IV(IsK).wE.-1.) G 	 TO 241
G(IsKYs2)	 _ .5*G(IsKY,1)	 +.25*(G(I,KY,3)
IF (IV(IsK+1).LT.1)

1G(IskYs2)	 At .'.*G(I,KY,3)	 +.25*(G(IsKY,l)
G(I,KYs2)	 = G(I,KYs2)
G(IsKY-1,2) n .5*(G(I,KY,2)	 +G(IsKY-2s2))
G(MsKY-1,2) _ .:*(G(M,KY,Z) 	 +G(M,KY—Z,2))

241 IF (I.GT.2) GO TO 231
251 K	 = K +^

IF (K.E4.MZ) GO TO 261
DO 252 J=1sMY
DC 252 I=1sMX
6(Isjsl)	 _ G(IsJn2)

252 G(IsJs2)	 = G(IsJ,3)
BUFFER OUT(N2s1) (G(lsl,l)sG(MXsMYsl) )
IF (UNIT(N2)9GT.G.) GO TO 401
BUFFER. IN (Nl,l) (G(1s1s3),G(MksMYs3))
IF (LNIT(NI).GT.O.) Gli TO 461
GO TO 211

261 EG(NG+1)	 = 0.
DO 262 L=2s3
BUFFER OUT (N2s1) (G(1,1sL)sG(+MXsMYsL) )
IF (UNIT(N2).GT.0.) GO TO 401

262 CONTINUE
REWIND Nl
REWIND N2
DO 3C2 K=I)MZ
BUFFER IN (N2sl) (G(lslsl)sG(MXsMYsl))
IF (L NIT(h+2).GT.G.) GO TO 4U1
BUFFER OUT(Nlsl) (G(lslsl),G(PXsMYsl))
IF (UN:i(Nl),GT.0.) GO TO 401

302 CONTINUE
IG	 1
RETUkN

401 IO	 =
RETJFN
END
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SU'IRCUT[NE	 SM00
C SMOOTHS	 POTENTIAL

COM"IGN	 G(193,26, 4), SO( 193,35),r0(131),ZU(131),
1	 IV(193,35),IT^1(3!^),ITE2(35),
2	 AU( 193),A1(193), AZ( 193),A3(193),
3	 6O(26),Cl(26),b2(2E),B3(26),
4	 Z(35),C1(35),C2(35),C3(35),
5	 XC(35),XZ(35),XZZ(35),YC(35),YZ(35),YZZ(35).p
6	 ;,,X,MY,yZ,KTELKTr2,ISYM,KSYM,SCAL,^ CAL Z,
7	 YAW,CYAv6,SYAw,ALPHA,CA, SAP FMACH, NIP N2,N3,I0

11 x	 N 	 +1 r
KY	 =. NY	 +l
MY	 4 	 +2 f
m 	 NZ	 +3
K1	 2
K2	 NZ
IF	 (KSYM.EJ.G)	 CSC	 TO	 1
K1	 =	 3
K2	 NZ	 +2

1 p 
PY
PZ
DG	 2	 L = 1,3 I
BUFFER	 IN	 (N1	 1	 (G(1,1,L),G(MX,NY,L))
IF	 (LNIT(N11. GT. 0.)	 GO	 TO	 51

2 CONTINUE
BUFFER	 OUT(N2,1)	 (G(l,Ll),G(MX,MY,l))
IF	 (L• NI'r(N2).GT.Uo)	 GU	 TO	 51
K	 K1

11 K	 K	 +1
00	 12	 J = 3, NY

r GO	 14	 I n 2,NX
14 G(I,J,4)	 _	 (1.	 — PX	 — PY	 —PZ)*G(I,J,2)

1	 +.5*PX*(G(1+1,J,2)	 +G(I-1,J,2))
2	 +.5*PY*(G(I,J+1,2)	 +G(I,J—1,Z))
3	 +.5*FZ*(G(i,J,3)	 +G(I,J,l))
G(1,.r,4)	 n 	 G(1,J,2)

1.2 G(MX,J,4)	 =	 G(MX,J,2)
DO	 It	 I=1,MX
G(I,1.#41	 G(I,1,2)
G( 192P4)	 =	 G(I,2,2f
G(I,KY,4)	 =	 G(I,KY#2)

16 G(I,kY,4)	 =	 G(I,MY,2)
BUFFER	 OUT(N2,1)	 (G(1,1,4),G(MX,NiY,4) )
IF	 ((NIT(N2)9GT.G.)	 GO	 TO	 51
IF	 (K.FU.K2)	 GO	 TO	 31
UO 22	 J=I,MY
DG 22	 1=I,MX
G(L,J.ol)	 n 	 G(1,J,21

22 G(I,J,2)	 =	 G(I,Jo3)
PUFFER	 IN	 (Nl,l)	 (G(1,1,3),G(MX,MY,3))
IF	 (L:NIT(Nl).GT.O.)	 GAO	 TO	 51
GO TC	 i1

31 BUFFER	 OUT(N2,1)	 (G(1,1,3),G(MX,MY,3) )
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IF	 (UNIT(N2) * GT * 0 * )	 GC	 TO	 51
REWIND NI
REWIND	 N2
CD 42 K=1,MZ
BUFFER	 IN	 (N2,1)	 (G(1,1p1),G(MX,MY,1))
IF	 (UNIT(N2) * GT * u * )	 GO	 TO	 51
BUFFEK	 OU1(Ni,l)	 (G(l,i,l),G(MX,MY,1))
IF	 (LNIT(Nl).GT.O.)	 GO	 TO	 51-

42 CONTINUE
IO	 =	 1
RETUPN

51 IO	 = 0
RETURN j

a END

SUBROUTINE	 SPL IF( M, Ni, S,F,FP,FP P,FPPP,KM,VM,KN,VN,MCUz,pFQM,IND)

C SPLINE	 FIT	 —	 JAMESON
C INT;:GRAL	 PLACED	 IN	 FPPP	 IF	 rL-OL	 GRZAIER	 THAN	 C
C IND	 SET	 TO	 ZcRO	 1r	 D4TA	 1LLrGAL

DIMENSION	 S(1),F(1),PFP(1),FPP(1),FPPP(1)
IND	 =	 C
K	 1A85(N	 —.M)
IF	 (K	 — 1)	 81, 81,1

I	 =	 M
J	 M	 +K-

us	 =	 sc,,1	 —sc11
D	 = DS 1

IF	 (GS)	 11,81,11
11 D 	 =	 (F(J)	 —F(I))/DS

IF	 (KM	 — 2)	 12,1,1.4
12 U	 =	 .5

V	 =	 3 * *(DF	 —VM)/DS
GO TO 25

13 U	 -	 0*
V	 = VM
GO TI 25

14 U	 =
V	 = —GS*vm
GO TO 25

21 I	 =
J	 =	 J	 +K
DS	 -	 S(J)	 —S(I)
IF	 (G*OS)	 81,81,23

23 OF	 =	 (F(J)	 —F(1))/GS
B	 =	 1o/(DS	 +DS	 +U)
U	 =	 ti *0
V	 -	 3*(L * *DF	 —V)

25 FP(I)	 U
FPP(I)	 V
U	 (2.	 —U)*DS

f`.
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V	 = 60 *LF +DS*V
IF (J	 —N) 21,3],21

31 IF (KN	 — 2) 32,33,34
32 V	 = (69*VN —V)/U

GO TL 35
33 v	 = VN

GO TO 35
34 V	 = (DS*VN	 +FPP(I))/(1•	 +FP(I))
35 B	 = V

_	 D	 = DS
41 DS	 S(J)	 —5(I)

O	 =.FPP(I)	 —FP(1)*V
FPPP(I)	 _ (V —U)/LS
FPP(I!	 U

Y	 FF(I)	 _ (F(J)	 — F(I)!/DS	 — US*(V	 +U	 +U)/6.
V	 = U
J	 = I
i	 = I	 — K	 {
IF (,;	 —M) 41,951,41	 j

FPP N (N)	 FPPF(I!
FPP(E)	 = d
FP(N)	 DF	 +D*(FPP(1)	 +U	 +8)/E.
IND	 1
IF (tr.00c! 81.9 81j,

61 FFPP(J)	 = F 0 M
v	 = FPP(J)	 i

71 J	 = J
J	 = J	 +K
GS	 3(J)	 —S(1)
U	 = FPP(J)
FPPP(J)	 = FPPP(I)	 +.5*DS*(F(1)	 +F(,i)	 — DS*US*(U	 +V)/129)
v	 U
IF (J	 — N)	 71,81,71	 i

81 PETUPN
END

SU3RLUTINE	 INTPL(M1,NI,SI,FI,MPNP S,F.PFP,FPP,FPPP,MODE)
C	 INTEFPOLATION USING TAYLOR SERIES — JAMESON
C	 ADDS CORRECTION FOR PIECEWISF CONSTANT FOURTH DERIVIATIVE
C	 IF MGDE GREATER THAN 0

DIMENSION	 SI(1)sF1(1),S(1),F(1),FP(1),FPP(1),FPPP(1)
K	 = IAES(N —M)
K	 (N —M)IN
I	 M
MIN	 = MI
NIN	 = NI
D	 = S(N)	 —S(M)
IF (C*(SI(NI)	 — SI(Mi))) 11,13,13

11 MIN	 = NI
NIN	 = MI
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13 KI	 = IABS(NIN —MIN)
IF (KI) 21,21,15

15 KI	 = (NIN —M1N)/K1
21 I1	 a MIN —KI

C	 0.

IF (NODE) 31,31,23
23 C	 * 1.
31 1I	 = II	 +KI

SS	 n SI(II)
33 I	 = I +K

IF (I	 —N) 35,37,35
35 IF ( C* (S (I )	 — SS) ) 3BP 33, 37
37 J	 = I

1	 I —K
SS	 SS	 —S( II
FPPPF	 C*(FPPP(J)	 --FPPP(i))/(S(J)
FF	 = FPPP(I)	 +.25*SS*FPPPP
FF	 = FPP(1)	 +SS*FF/3.
FF	 = FP(I)	 +.;,*SS*FF
FI(II)	 = F(I)	 +SS*FF
IF ( II	 — NIN) 31,41,31

41 RETURN
END

—S(I))

SUBROUTINk RPLGT (IPLJT,NFF'; p KES,COUN(,TITL ,F M ACH,YA,Ai,	 1
1	 N1,N2,N3)	 i

C	 PLOTS CONVERGENCE RATE
UIMENSION	 RES(1), COUNT( I),TITLE(201,k(20)
IF (NRES.LE.l) RETURN
IF (IPLOT.EO.0) GO TO 11
CALL PLOTSBL(1000Y24HANTGNY JAMESON 	 1J960.4R)
CALL PLOT(1.?5,1.,-3)

11 IPL07	 = D

RATE	 _ (A6S(RES(NRES)/KES(1)))
1

	

	 **(1./(CGUNT(AKE5)	 —COUNT(1)))
ENCODE( 80P 12, R ) TITLE

12 FORMAT(20A4)
CALL SYMBOL(1.,.5,.14,R,0.,8C)
ENCODE (50.#14 -t R) FMACH, YA, AL

14 FORMAT(5HMACH ,F9.3,4X,5HYAw ,F9.3,4X,7HALPHA,F9.3)
CALL SYMBGL(1.,.^-Js.14,R,rJ.,5C)
ENCOIE(32,16,R.) kES(1),RES(NFES)

16 FORIAT(SHRESI ,L9.3,4X,5HRLS2 ,t9.3)
CALL SYMB0L(1.,0.,.14,R,0.,32)
ENCODE (50,18PR) COUNT(1),000NT(NRES),RATE

18 FORMAT(SHMORK 1, F9.2, 4x, SHWORK2, F9.2, 4X, 5HR AT?- , F9.4 )
CALL SYMLGL(l.,—.25,.14,R,0.P^0)
ENCODE(24,20,R) N1,N2,N3

20 FORMAT(6HGRID ,I4,3H X ,I4,SH X ,14)
CALL SYMROL(l.,—.5,.14,8,0.,24)
RMIN	 = 0.
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RMAX	 = 09
CUUNTI	 s COUNT(1)
KtS1	 a RES(1)
GC 2i I=1,NRES
COUNT(I)	 = COUNT(I) —COUNTI
RES(I )	 i ALOG(APS(RESM/PE51) )
RMAX	 = AMAX1(RMAX,RES(I))

22 RMIN	 = AMINI(RMINPRES(I))
YSCAL	 = 1./ALOGW',s )

_ Y I N T	 • 19
IF (YSCAL*RMIN.LT9- 69) YINT = 2.
PLOW	 =. —E.*YINT
YSCAL	 = YSCAL/YINT
XINT	 n 509

` IF (CGUNT(NRES)vGT.3C0.) XINT = 100o
IF (CCUNT(NaES).GT.bCO.) XINT = 200.
IF (COUNT(NRES)9GT.12u0.) XINT = 5079
IF (COUNT(NRES)oGT9E000.) XINT a 10009
XSCAL	 a 1./XINT
CALL PLOT( 9^,4.5,-3)
CALL AXIS(0.,-36,lOHLUG(EKKOl ),1C,8.,90.sYLOW,YINT,0)
CALL PL0T(39,-3.r-3)
CALL AXIS(-3.,0.,4HNCYC,-4,b9,09,0.,XINT,0)
UC 32 Iu1,NRES
COUNTM c XSCAL*COUNT(I) — 3.

32 R ES(J)	 = AMIP1(2.,YSCAL*kES(0 ) 	 +6.
CALL LINE(COUNT,RES,NRES,t,U,1,09s1.,0.,19)
CALL PLOT (895,-1.5,-3)
RETURN
END

SUBROUTINi 	 GRAPH ( IFLOT, lip 12s X, Y,CP, TITLE, FMACH, YAsAL,
1	 ZpCL,CD,CHGKGO,XSCAL,PSCAL)

C	 GENEFATES CALCOMP PLUS
DIMENSION	 X(1),Y(1),CP(1),TITLE(20),R(20)
IF (1PLOT.FQ.0) GG TO 11
CALL PLOTS3L(10(. C►,24HANTONY JAMESON	 109tG4R)
CALL PLOT(1925,1.,-3)

11 IPLOT	 =
ENC91!E (80, 12, R ) TITLE

12 FORMAT(2OA4)
CALL SYMR0L(.5,C.,914,K,09s8L)
ENCODE( 44s14,R) FMACH,YA,AL

14 FGRMiT(5HrACH ,F7.3,4X,5HYAW sF7.3,4X,5HALPHA,F7.3)
CALL SYMBC.L(o5, —*25,914,R,(',.s44)
ENCOVE(44s16,P) ZsCLsCD

It FORMtT(5HZ	 ,F792,4X,5HCL	 PF794,4X,5NCD	 ,F794)
CALL SYMFOL(.5,—.5,.14,R,09,44)
AMAX	 n X( I1)
XMIN	 = X(Il)
YMIN	 = Y(I1)
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00 22 IwI1,I2
XMAX	 = AMAX1(X(I),XMAX)
XMIN	 = AM1N1(X(I),XMIN)

22 YMIN	 a AMIf<1(YG1),YMIN)
SCALX	 n 5./(XMAX —XMIN)
IF (XSCAL.GT.G.) SCALX = XSCAL/(XMAX —XMI N)
IF (kSCAL.LT.O.) SCALX = 48S(X5CAL)/CHGk00
PINT	 = —.4
IF (PSCAL.NE.O.) PINT = —A5S(PSCAL)
SCALP	 = 1./PINT
PMIN	 = —3.*PINT
PMAX	 = 5.*PINT
DO 24 I=I1,I2
X(I)	 = SCA(.X*(X(I)	 —XMIN)	 +.F

24 Y(I)	 = SCALX*(Y(1)	 —YPIN)	 +.5
CP ►'14X	 = G.
IMAX	 = (I2	 +11)12
N	 (I2	 —I1)/8
N1	 IMAX —N
N2	 IMAX +N
DO 2E I=NIPN2
IF (CP(I).LE.CPrAX) GO fl, 2F
CPMAX	 - CP(l)
IMAX	 = I

26 CONTINUE
N	 n 12 — I1 +1
CALL LINE( X(I1),Y(I1),w,i,^,l,O.sl.,u.,l.)
CALL PLrJT(0.,4.5,-3)
CALL AXIS (0.,-3.,ZHCP,2,ti.,9C.,Pt o l.NP PIN T,O)
CPC	 = (((J.	 +FMACH**2)/6.)**3.7 —1.)/(.7*FMACH**2)
IF (CPC.GE.PMAX) CALL SYMB-L(('.,SCALP*CPC,.4v,15,ti.,-1)
DO 32 I-I1,IMAX
IF (CP(I).LT.PMAX) GO TO 32
CALL SYMBOL (X(I),SCALP*CP(I),.U7,3,4;.,-1)

32 CONTINUE
DO 34 I=IMAX,12
IF (CP(I).LT.PMAX) GU TO 34

CALL SYMBOL(X(I),SCALP*CP(I),907,3s0.,-1)
34 CONTINUE

CALL PLOT(lZ.,-4.5,-3)
RETURN
END

SUBRLUTINE THREED(IPLOT,SV,SM,CP,X,Y,TITLE, YAP ALP
1	 VLDPCL,CDPCHORUOPXSCALPPSCAL)

C	 GENERATES THREE Ii1MENSI0NAL PLOTS
CLMMON	 G(193,26,4),SO(153,B5),EO(131),ZO(131),

1	 IV( 193,3.),IfEl(3"),ITcL(35),
2	 40(193),AI(193),A2(193),A3(193),
3	 8026),81(26),32(2E),831Z61,
4	 Z(35),Cl(35),C2(35),C3(35),
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5	 XC(3'•),XZ(35),XZZ(3;),YC(35),YZ(35),YZZ(35)s
6	 NX,NY,NZPKTE1,KTLisISYM,KSYM.SCAL,SCALZ,
7	 YAW, CYAw, YAh, 4LPHA, CA, SA, FMACH,N1sN2, N3, I0
DIMENSION	 X(1)sY(1),SV(1),SM(1),CP(1)s TITLE (2G),R(20)
LX	 NX/2 +I
Nx	 = •, X.	 +I
MY	 = NY +2
IF (XSCAL.NE.O.) SCALX =	 *ANS(XSCAL)/CH6RD0
IF (PSCAL * GE.C.) SCALX = 5./(Z(KTE2)	 —Z(KTE1))
SCALP	 a —1.25

IF (FSCAL.NE.C.) SCALP = —.5/ABS(PSCAL)

SX	 - 2.	 —SC ALX*XC(KTkl)
TX	 - 3.5
IF (IPLOT.EQ.C) GO TO 1
CALL °LQTS8L(10G0,24HAiNTONY JAMESON 	 109C04R)
CALL PLOT(192`,l.s-3)

1 IPLOT	 0
M	 1
ENC0bE(12,2,R)

2 FORMAT(12HVIE* 01^ wING)
CALL SYMdGI(2.,.:,.14,K,C^.,12)

11 DO li L n 1,3
BUFFER IN (Nlsl) (G(1,L,L),G(h1XsMY,L))
IF (LN IT( K1).GT.G.) 60 TO 101

12 CONTINUE
K	 = 2

2.1 K	 K +1
IF (K.GT.KTE2) CO TO 61
UG 22 J=1,MY
DO 2? I = 1, MX
G(LJ,1)	 n G(I,J,2)

22 G(I,J,2)	 = G(L,J,3)
BUFFER IN (Nlsl) ((:(l,l,j),G(MX,MY,3))
IF (UNIT(N1).QT.0.) G7 TL 101
IF (K.LT.KTEI) GG TO 21
I1	 = ITt7 ( K )
I2	 - ITE2(K)
CALL V'^LO (K,2,SV,SM,CP,)k,Y)
IF (K.GT.KTE1) GO TO 41
LNC9f_•E( 13C,32,R) TITLE

32 FORMAT(2CA4)
CALL SYMBOL( o5sG.,.14,R,G.,6C)
ENCOCE(44,34,R) FMACH,YA,AL

34 FORMkT(5HNACH ,F7.3,4X,5HYAw ,F7.3p4X,5HALPHA,F7.3)
CALL SYMBOL(.,—.25,.14,k,0.s44)
LN000E(44s3b,R) VLL,CL,CC

36 FORMAT(5HL/D PF79294X.95HCL	 ,F7.4,4Xs5HCD	 ,F7.4)
CALL SYM80L(.5,—.5,.14,R,0.,44)

41 SY	 - 59*(Z(K)	 — Z(KTE1))/(Z(KTE2)	 — Z(KTEI))	 +2.75
UO 42 I=T1,I2
X(I)	 = SCALX*X(1)	 +Sic
Y(I)	 = SCALX*Y(l)	 +SY

42 CP(I1	 = SCALP*CP(1)	 +SY
IF (h.EQ.2) GO 10 51
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N	 = I2 — I1 +1
CALL LINE( X(11),Y(11),N,1,G,1,C.,1.,G.,1.)
GO TC 21

51 N	 = 12 —LX +1
CALL LINE(X(LX),CP(LX),N,1,G,1,C.,1.,0.,1.)
N4	 n LX — I1 +1
DO 52 I n Il,IX

52 X(I)	 - X(i)	 +TX
CALL LINE(X(I1),CP(11),N,1,G,1 ► %.,t.,C.,l.)
GO T1 21

61 REWIND Nl
M	 M	 +1	 ^+ {

CALL PLOT(12.,C.,—^)	 4
IF (F^.GT.2) GO TC 71
SX	 - —SCtLX+XC(KTEi)
ENC01E(24p6?sR)

62 FORMAT(24HUPPER SURFACE PRESSUPE 	 )
CALL SYMBOL(0.,.5,.14.PRvG.,24)
ENCODE(24,64,R)

64 FCRMAT(24HLOwER SURFACE PRESSL: E )
CALL SYMBCL(3.5,.5,.14,R,J.,24)
GO TC 11

71 1U	 1
RETUFN	 d

1G1 IO	 x G

CALL PL0T(12.,0.,-3)
kETURN
END

!.	 S

92



t

^q.

This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:

A. Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or

B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report.

As used in the above, "person acting on behalf
of the Administration" includes any employee
or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor
prepares, disseminates, or provides access to,
any information pursuant to his employment or
contract  with the Administration, or his
employment with such contractor.


